Willow123 commited on
Commit
d8cb8ad
·
1 Parent(s): c5ff92c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -1069
app.py CHANGED
@@ -1,1075 +1,12 @@
1
- import os
2
- import re
3
- import sys
4
- sys.path.insert(0, '.')
5
- sys.path.insert(0, '..')
6
 
7
- import argparse
8
- import gradio as gr
9
- os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), 'tmp')
10
- import copy
11
- import time
12
- import shutil
13
- import requests
14
- from PIL import Image, ImageFile
15
- import torch
16
- import transformers
17
- from transformers import StoppingCriteriaList, AutoTokenizer, AutoModel
18
 
19
- ImageFile.LOAD_TRUNCATED_IMAGES = True
20
 
21
- from demo_asset.assets.css_html_js import custom_css
22
- from demo_asset.gradio_patch import Chatbot as grChatbot
23
- from demo_asset.serve_utils import Stream, Iteratorize
24
- from demo_asset.conversation import CONV_VISION_7132_v2, StoppingCriteriaSub
25
- from demo_asset.download import download_image_thread
26
 
27
- max_section = 60
28
- no_change_btn = gr.Button.update()
29
- disable_btn = gr.Button.update(interactive=False)
30
- enable_btn = gr.Button.update(interactive=True)
31
- chat_stream_output = True
32
- article_stream_output = True
33
-
34
-
35
- def get_urls(caption, exclude):
36
- headers = {'Content-Type': 'application/json'}
37
- json_data = {'caption': caption, 'exclude': exclude, 'need_idxs': True}
38
- response = requests.post('https://lingbi.openxlab.org.cn/image/similar',
39
- headers=headers,
40
- json=json_data)
41
- urls = response.json()['data']['image_urls']
42
- idx = response.json()['data']['indices']
43
- return urls, idx
44
-
45
-
46
- class Demo_UI:
47
- def __init__(self, folder):
48
- self.llm_model = AutoModel.from_pretrained(folder, trust_remote_code=True)
49
- tokenizer = AutoTokenizer.from_pretrained(folder, trust_remote_code=True)
50
-
51
- self.llm_model.internlm_tokenizer = tokenizer
52
- self.llm_model.tokenizer = tokenizer
53
- self.llm_model.eval().to('cuda')
54
- self.device = 'cuda'
55
- print(f" load model done: ", type(self.llm_model))
56
-
57
- self.eoh = self.llm_model.internlm_tokenizer.decode(
58
- torch.Tensor([103027]), skip_special_tokens=True)
59
- self.eoa = self.llm_model.internlm_tokenizer.decode(
60
- torch.Tensor([103028]), skip_special_tokens=True)
61
- self.soi_id = len(tokenizer) - 1
62
- self.soi_token = '<SOI_TOKEN>'
63
-
64
- self.vis_processor = self.llm_model.vis_processor
65
- self.device = 'cuda'
66
-
67
- stop_words_ids = [
68
- torch.tensor([943]).to(self.device),
69
- torch.tensor([2917, 44930]).to(self.device),
70
- torch.tensor([45623]).to(self.device), ### new setting
71
- torch.tensor([46323]).to(self.device), ### new setting
72
- torch.tensor([103027]).to(self.device), ### new setting
73
- torch.tensor([103028]).to(self.device), ### new setting
74
- ]
75
- self.stopping_criteria = StoppingCriteriaList(
76
- [StoppingCriteriaSub(stops=stop_words_ids)])
77
- self.r2 = re.compile(r'<Seg[0-9]*>')
78
- self.max_txt_len = 1680
79
-
80
- def reset(self):
81
- self.output_text = ''
82
- self.caps = {}
83
- self.show_caps = False
84
- self.show_ids = {}
85
-
86
- def get_images_xlab(self, caption, loc, exclude):
87
- urls, idxs = get_urls(caption.strip()[:53], exclude)
88
- print(urls[0])
89
- print('download image with url')
90
- download_image_thread(urls,
91
- folder='articles/' + self.title,
92
- index=self.show_ids[loc] * 1000 + loc,
93
- num_processes=4)
94
- print('image downloaded')
95
- return idxs
96
-
97
- def generate(self, text, random, beam, max_length, repetition):
98
- input_tokens = self.llm_model.internlm_tokenizer(
99
- text, return_tensors="pt",
100
- add_special_tokens=True).to(self.llm_model.device)
101
- img_embeds = self.llm_model.internlm_model.model.embed_tokens(
102
- input_tokens.input_ids)
103
- with torch.no_grad():
104
- with self.llm_model.maybe_autocast():
105
- outputs = self.llm_model.internlm_model.generate(
106
- inputs_embeds=img_embeds,
107
- stopping_criteria=self.stopping_criteria,
108
- do_sample=random,
109
- num_beams=beam,
110
- max_length=max_length,
111
- repetition_penalty=float(repetition),
112
- )
113
- output_text = self.llm_model.internlm_tokenizer.decode(
114
- outputs[0][1:], add_special_tokens=False)
115
- output_text = output_text.split('<TOKENS_UNUSED_1>')[0]
116
- return output_text
117
-
118
- def generate_text(self, title, beam, repetition, text_num, random):
119
- text = ' <|User|>:根据给定标题写一个图文并茂,不重复的文章:{}\n'.format(
120
- title) + self.eoh + ' <|Bot|>:'
121
- print('random generate:{}'.format(random))
122
- output_text = self.generate(text, random, beam, text_num, repetition)
123
- return output_text
124
-
125
- def generate_loc(self, text_sections, image_num, progress):
126
- full_txt = ''.join(text_sections)
127
- input_text = f' <|User|>:给定文章"{full_txt}" 根据上述文章,选择适合插入图像的{image_num}行' + ' \n<TOKENS_UNUSED_0> <|Bot|>:适合插入图像的行是'
128
-
129
- for _ in progress.tqdm([1], desc="image spotting"):
130
- output_text = self.generate(input_text,
131
- random=False,
132
- beam=5,
133
- max_length=300,
134
- repetition=1.)
135
- inject_text = '适合插入图像的行是' + output_text
136
- print(inject_text)
137
-
138
- locs = []
139
- for m in self.r2.findall(inject_text):
140
- locs.append(int(m[4:-1]))
141
- print(locs)
142
- return inject_text, locs
143
-
144
- def generate_cap(self, text_sections, pos, progress):
145
- pasts = ''
146
- caps = {}
147
- for idx, po in progress.tqdm(enumerate(pos), desc="image captioning"):
148
- full_txt = ''.join(text_sections[:po + 2])
149
- if idx > 0:
150
- past = pasts[:-2] + '。'
151
- else:
152
- past = pasts
153
-
154
- input_text = f' <|User|>: 给定文章"{full_txt}" {past}给出适合在<Seg{po}>后插入的图像对应的标题。' + ' \n<TOKENS_UNUSED_0> <|Bot|>: 标题是"'
155
-
156
- cap_text = self.generate(input_text,
157
- random=False,
158
- beam=1,
159
- max_length=100,
160
- repetition=5.)
161
- cap_text = cap_text.split('"')[0].strip()
162
- print(cap_text)
163
- caps[po] = cap_text
164
-
165
- if idx == 0:
166
- pasts = f'现在<Seg{po}>后插入图像对应的标题是"{cap_text}", '
167
- else:
168
- pasts += f'<Seg{po}>后插入图像对应的标题是"{cap_text}", '
169
-
170
- print(caps)
171
- return caps
172
-
173
- def generate_loc_cap(self, text_sections, image_num, progress):
174
- inject_text, locs = self.generate_loc(text_sections, image_num,
175
- progress)
176
- caps = self.generate_cap(text_sections, locs, progress)
177
- return caps
178
-
179
- def interleav_wrap(self, img_embeds, text):
180
- batch_size = img_embeds.shape[0]
181
- im_len = img_embeds.shape[1]
182
- text = text[0]
183
- text = text.replace('<Img>', '')
184
- text = text.replace('</Img>', '')
185
- parts = text.split('<ImageHere>')
186
- assert batch_size + 1 == len(parts)
187
- warp_tokens = []
188
- warp_embeds = []
189
- warp_attns = []
190
- soi = (torch.ones([1, 1]) * self.soi_id).long().to(img_embeds.device)
191
- soi_embeds = self.llm_model.internlm_model.model.embed_tokens(soi)
192
- temp_len = 0
193
-
194
- for idx, part in enumerate(parts):
195
- if len(part) > 0:
196
- part_tokens = self.llm_model.internlm_tokenizer(
197
- part, return_tensors="pt",
198
- add_special_tokens=False).to(img_embeds.device)
199
- part_embeds = self.llm_model.internlm_model.model.embed_tokens(
200
- part_tokens.input_ids)
201
-
202
- warp_tokens.append(part_tokens.input_ids)
203
- warp_embeds.append(part_embeds)
204
- temp_len += part_embeds.shape[1]
205
- if idx < batch_size:
206
- warp_tokens.append(soi.expand(-1, img_embeds[idx].shape[0]))
207
- # warp_tokens.append(soi.expand(-1, img_embeds[idx].shape[0] + 1))
208
- # warp_embeds.append(soi_embeds) ### 1, 1, C
209
- warp_embeds.append(img_embeds[idx].unsqueeze(0)) ### 1, 34, C
210
- temp_len += im_len
211
-
212
- if temp_len > self.max_txt_len:
213
- break
214
-
215
- warp_embeds = torch.cat(warp_embeds, dim=1)
216
-
217
- return warp_embeds[:, :self.max_txt_len].to(img_embeds.device)
218
-
219
- def align_text(self, samples):
220
- text_new = []
221
- text = [t + self.eoa + ' </s>' for t in samples["text_input"]]
222
- for i in range(len(text)):
223
- temp = text[i]
224
- temp = temp.replace('###Human', '<|User|>')
225
- temp = temp.replace('### Human', '<|User|>')
226
- temp = temp.replace('<|User|> :', '<|User|>:')
227
- temp = temp.replace('<|User|>: ', '<|User|>:')
228
- temp = temp.replace('<|User|>', ' <|User|>')
229
-
230
- temp = temp.replace('###Assistant', '<|Bot|>')
231
- temp = temp.replace('### Assistant', '<|Bot|>')
232
- temp = temp.replace('<|Bot|> :', '<|Bot|>:')
233
- temp = temp.replace('<|Bot|>: ', '<|Bot|>:')
234
- temp = temp.replace('<|Bot|>', self.eoh + ' <|Bot|>')
235
- if temp.find('<|User|>') > temp.find('<|Bot|>'):
236
- temp = temp.replace(' <|User|>', self.eoa + ' <|User|>')
237
- text_new.append(temp)
238
- #print (temp)
239
- return text_new
240
-
241
- def model_select_image(self, output_text, caps, root, progress):
242
- print('model_select_image')
243
- pre_text = ''
244
- pre_img = []
245
- pre_text_list = []
246
- ans2idx = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
247
- selected = {k: 0 for k in caps.keys()}
248
- for i, text in enumerate(output_text.split('\n')):
249
- pre_text += text + '\n'
250
- if i in caps:
251
- images = copy.deepcopy(pre_img)
252
- for j in range(4):
253
- image = Image.open(
254
- os.path.join(
255
- root, f'temp_{self.show_ids[i] * 1000 + i}_{j}.png'
256
- )).convert("RGB")
257
- image = self.vis_processor(image)
258
- images.append(image)
259
- images = torch.stack(images, dim=0)
260
-
261
- pre_text_list.append(pre_text)
262
- pre_text = ''
263
-
264
- images = images.cuda()
265
- instruct = ' <|User|>:根据给定上下文和候选图像,选择合适的配图:'
266
- input_text = '<ImageHere>'.join(
267
- pre_text_list
268
- ) + '\n\n候选图像包括: A.<ImageHere>\nB.<ImageHere>\nC.<ImageHere>\nD.<ImageHere>\n\n<TOKENS_UNUSED_0> <|Bot|>:最合适的图是'
269
- input_text = instruct + input_text
270
- samples = {}
271
- samples['text_input'] = [input_text]
272
- self.llm_model.debug_flag = 0
273
- with torch.no_grad():
274
- with torch.cuda.amp.autocast():
275
- img_embeds = self.llm_model.encode_img(images)
276
- input_text = self.align_text(samples)
277
- img_embeds = self.interleav_wrap(
278
- img_embeds, input_text)
279
- bos = torch.ones(
280
- [1, 1]) * self.llm_model.internlm_tokenizer.bos_token_id
281
- bos = bos.long().to(images.device)
282
- meta_embeds = self.llm_model.internlm_model.model.embed_tokens(
283
- bos)
284
- inputs_embeds = torch.cat([meta_embeds, img_embeds], dim=1)
285
-
286
- with torch.cuda.amp.autocast():
287
- outputs = self.llm_model.internlm_model.generate(
288
- inputs_embeds=inputs_embeds[:, :-2],
289
- do_sample=False,
290
- num_beams=5,
291
- max_length=10,
292
- repetition_penalty=1.,
293
- )
294
- out_text = self.llm_model.internlm_tokenizer.decode(
295
- outputs[0][1:], add_special_tokens=False)
296
-
297
- try:
298
- answer = out_text[1] if out_text[0] == ' ' else out_text[0]
299
- pre_img.append(images[len(pre_img) + ans2idx[answer]].cpu())
300
- except:
301
- print('Select fail, use first image')
302
- answer = 'A'
303
- pre_img.append(images[len(pre_img) + ans2idx[answer]].cpu())
304
- selected[i] = ans2idx[answer]
305
- return selected
306
-
307
- def show_md(self, text_sections, title, caps, selected, show_cap=False):
308
- md_shows = []
309
- ga_shows = []
310
- btn_shows = []
311
- cap_textboxs, cap_searchs = [], []
312
- editers = []
313
- for i in range(len(text_sections)):
314
- if i in caps:
315
- if show_cap:
316
- md = text_sections[
317
- i] + '\n' + '<div align="center"> <img src="file/articles/{}/temp_{}_{}.png" width = 500/> {} </div>'.format(
318
- title, self.show_ids[i] * 1000 + i, selected[i],
319
- caps[i])
320
- else:
321
- md = text_sections[
322
- i] + '\n' + '<div align="center"> <img src="file=articles/{}/temp_{}_{}.png" width = 500/> </div>'.format(
323
- title, self.show_ids[i] * 1000 + i, selected[i])
324
- img_list = [('articles/{}/temp_{}_{}.png'.format(
325
- title, self.show_ids[i] * 1000 + i,
326
- j), 'articles/{}/temp_{}_{}.png'.format(
327
- title, self.show_ids[i] * 1000 + i, j))
328
- for j in range(4)]
329
-
330
- ga_show = gr.Gallery.update(visible=True, value=img_list)
331
- ga_shows.append(ga_show)
332
-
333
- btn_show = gr.Button.update(visible=True,
334
- value='\U0001f5d1\uFE0F')
335
-
336
- cap_textboxs.append(
337
- gr.Textbox.update(visible=True, value=caps[i]))
338
- cap_searchs.append(gr.Button.update(visible=True))
339
- else:
340
- md = text_sections[i]
341
- ga_show = gr.Gallery.update(visible=False, value=[])
342
- ga_shows.append(ga_show)
343
-
344
- btn_show = gr.Button.update(visible=True, value='\u2795')
345
- cap_textboxs.append(gr.Textbox.update(visible=False))
346
- cap_searchs.append(gr.Button.update(visible=False))
347
-
348
- md_show = gr.Markdown.update(visible=True, value=md)
349
- md_shows.append(md_show)
350
- btn_shows.append(btn_show)
351
- editers.append(gr.update(visible=True))
352
- print(i, md)
353
-
354
- md_hides = []
355
- ga_hides = []
356
- btn_hides = []
357
- for i in range(max_section - len(text_sections)):
358
- md_hide = gr.Markdown.update(visible=False, value='')
359
- md_hides.append(md_hide)
360
-
361
- btn_hide = gr.Button.update(visible=False)
362
- btn_hides.append(btn_hide)
363
- editers.append(gr.update(visible=False))
364
-
365
- for i in range(max_section - len(ga_shows)):
366
- ga_hide = gr.Gallery.update(visible=False, value=[])
367
- ga_hides.append(ga_hide)
368
- cap_textboxs.append(gr.Textbox.update(visible=False))
369
- cap_searchs.append(gr.Button.update(visible=False))
370
-
371
- return md_shows + md_hides + ga_shows + ga_hides + btn_shows + btn_hides + cap_textboxs + cap_searchs + editers, md_shows
372
-
373
- def generate_article(self,
374
- title,
375
- beam,
376
- repetition,
377
- text_num,
378
- msi,
379
- random,
380
- progress=gr.Progress()):
381
- self.reset()
382
- self.title = title
383
- if article_stream_output:
384
- text = ' <|User|>:根据给定标题写一个图文并茂,不重复的文章:{}\n'.format(
385
- title) + self.eoh + ' <|Bot|>:'
386
- input_tokens = self.llm_model.internlm_tokenizer(
387
- text, return_tensors="pt",
388
- add_special_tokens=True).to(self.llm_model.device)
389
- img_embeds = self.llm_model.internlm_model.model.embed_tokens(
390
- input_tokens.input_ids)
391
- generate_params = dict(
392
- inputs_embeds=img_embeds,
393
- num_beams=beam,
394
- do_sample=random,
395
- stopping_criteria=self.stopping_criteria,
396
- repetition_penalty=float(repetition),
397
- max_length=text_num,
398
- bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
399
- eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
400
- pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
401
- )
402
- output_text = "▌"
403
- with self.generate_with_streaming(**generate_params) as generator:
404
- for output in generator:
405
- decoded_output = self.llm_model.internlm_tokenizer.decode(
406
- output[1:])
407
- if output[-1] in [
408
- self.llm_model.internlm_tokenizer.eos_token_id
409
- ]:
410
- break
411
- output_text = decoded_output.replace('\n', '\n\n') + "▌"
412
- yield (output_text,) + (gr.Markdown.update(visible=False),) * (max_section - 1) + (gr.Gallery.update(visible=False),) * max_section + \
413
- (gr.Button.update(visible=False),) * max_section + (gr.Textbox.update(visible=False),) * max_section + (gr.Button.update(visible=False),) * max_section + \
414
- (gr.update(visible=False),) * max_section + (disable_btn,) * 2
415
- time.sleep(0.03)
416
- output_text = output_text[:-1]
417
- yield (output_text,) + (gr.Markdown.update(visible=False),) * (max_section - 1) + (gr.Gallery.update(visible=False),) * max_section + \
418
- (gr.Button.update(visible=False),) * max_section + (gr.Textbox.update(visible=False),) * max_section + (gr.Button.update(visible=False),) * max_section +\
419
- (gr.update(visible=False),) * max_section + (disable_btn,) * 2
420
- else:
421
- output_text = self.generate_text(title, beam, repetition, text_num,
422
- random)
423
-
424
- print(output_text)
425
- output_text = re.sub(r'(\n[ \t]*)+', '\n', output_text)
426
- if output_text[-1] == '\n':
427
- output_text = output_text[:-1]
428
- print(output_text)
429
- output_text = '\n'.join(output_text.split('\n')[:max_section])
430
-
431
- text_sections = output_text.split('\n')
432
- idx_text_sections = [
433
- f'<Seg{i}>' + ' ' + it + '\n' for i, it in enumerate(text_sections)
434
- ]
435
- caps = self.generate_loc_cap(idx_text_sections, '', progress)
436
- #caps = {0: '成都的三日游路线图,包括春熙路、太古里、IFS国金中心、大慈寺、宽窄巷子、奎星楼街、九眼桥(酒吧一条街)、武侯祠、锦里、杜甫草堂、浣花溪公园、青羊宫、金沙遗址博物馆、文殊院、人民公园、熊猫基地、望江楼公园、东郊记忆、建设路小吃街、电子科大清水河校区、三圣乡万福花卉市场、龙湖滨江天街购物广场和返程。', 2: '春熙路的繁华景象,各种时尚潮流的品牌店和美食餐厅鳞次栉比。', 4: 'IFS国金中心的豪华购物中心,拥有众多国际知名品牌的旗舰店和专卖店,同时还有电影院、��身房 配套设施。', 6: '春熙路上的著名景点——太古里,是一个集购物、餐饮、娱乐于一体的高端时尚街区,也是成都著名的网红打卡地之一。', 8: '大慈寺的外观,是一座历史悠久的佛教寺庙,始建于唐朝,有着深厚的文化底蕴和历史价值。'}
437
- #self.show_ids = {k:0 for k in caps.keys()}
438
- self.show_ids = {k: 1 for k in caps.keys()}
439
-
440
- print(caps)
441
- self.ex_idxs = []
442
- for loc, cap in progress.tqdm(caps.items(), desc="download image"):
443
- #self.show_ids[loc] += 1
444
- idxs = self.get_images_xlab(cap, loc, self.ex_idxs)
445
- self.ex_idxs.extend(idxs)
446
-
447
- if msi:
448
- self.selected = self.model_select_image(output_text, caps,
449
- 'articles/' + title,
450
- progress)
451
- else:
452
- self.selected = {k: 0 for k in caps.keys()}
453
- components, md_shows = self.show_md(text_sections, title, caps,
454
- self.selected)
455
- self.show_caps = False
456
-
457
- self.output_text = output_text
458
- self.caps = caps
459
- if article_stream_output:
460
- yield components + [enable_btn] * 2
461
- else:
462
- return components + [enable_btn] * 2
463
-
464
- def adjust_img(self, img_num, progress=gr.Progress()):
465
- text_sections = self.output_text.split('\n')
466
- idx_text_sections = [
467
- f'<Seg{i}>' + ' ' + it + '\n' for i, it in enumerate(text_sections)
468
- ]
469
- img_num = min(img_num, len(text_sections))
470
- caps = self.generate_loc_cap(idx_text_sections, int(img_num), progress)
471
- #caps = {1:'318川藏线沿途的风景照片', 4:'泸定桥的全景照片', 6:'折多山垭口的全景照片', 8:'稻城亚丁机场的全景照片', 10:'姊妹湖的全景照片'}
472
-
473
- print(caps)
474
- sidxs = []
475
- for loc, cap in caps.items():
476
- if loc in self.show_ids:
477
- self.show_ids[loc] += 1
478
- else:
479
- self.show_ids[loc] = 1
480
- idxs = self.get_images_xlab(cap, loc, sidxs)
481
- sidxs.extend(idxs)
482
- self.sidxs = sidxs
483
-
484
- self.selected = {k: 0 for k in caps.keys()}
485
- components, md_shows = self.show_md(text_sections, self.title, caps,
486
- self.selected)
487
-
488
- self.caps = caps
489
- return components
490
-
491
- def add_delete_image(self, text, status, index):
492
- index = int(index)
493
- if status == '\U0001f5d1\uFE0F':
494
- if index in self.caps:
495
- self.caps.pop(index)
496
- self.selected.pop(index)
497
- md_show = gr.Markdown.update(value=text.split('\n')[0])
498
- gallery = gr.Gallery.update(visible=False, value=[])
499
- btn_show = gr.Button.update(value='\u2795')
500
- cap_textbox = gr.Textbox.update(visible=False)
501
- cap_search = gr.Button.update(visible=False)
502
- else:
503
- md_show = gr.Markdown.update()
504
- gallery = gr.Gallery.update(visible=True, value=[])
505
- btn_show = gr.Button.update(value='\U0001f5d1\uFE0F')
506
- cap_textbox = gr.Textbox.update(visible=True)
507
- cap_search = gr.Button.update(visible=True)
508
-
509
- return md_show, gallery, btn_show, cap_textbox, cap_search
510
-
511
- def search_image(self, text, index):
512
- index = int(index)
513
- if text == '':
514
- return gr.Gallery.update()
515
-
516
- if index in self.show_ids:
517
- self.show_ids[index] += 1
518
- else:
519
- self.show_ids[index] = 1
520
- self.caps[index] = text
521
- idxs = self.get_images_xlab(text, index, self.ex_idxs)
522
- self.ex_idxs.extend(idxs)
523
-
524
- img_list = [('articles/{}/temp_{}_{}.png'.format(
525
- self.title, self.show_ids[index] * 1000 + index,
526
- j), 'articles/{}/temp_{}_{}.png'.format(
527
- self.title, self.show_ids[index] * 1000 + index, j))
528
- for j in range(4)]
529
- ga_show = gr.Gallery.update(visible=True, value=img_list)
530
- return ga_show
531
-
532
- def replace_image(self, article, index, evt: gr.SelectData):
533
- index = int(index)
534
- self.selected[index] = evt.index
535
- if '<div align="center">' in article:
536
- return re.sub(r'file=.*.png', 'file={}'.format(evt.value), article)
537
- else:
538
- return article + '\n' + '<div align="center"> <img src="file={}" width = 500/> </div>'.format(
539
- evt.value)
540
-
541
- def add_delete_caption(self):
542
- self.show_caps = False if self.show_caps else True
543
- text_sections = self.output_text.split('\n')
544
- components, _ = self.show_md(text_sections,
545
- self.title,
546
- self.caps,
547
- selected=self.selected,
548
- show_cap=self.show_caps)
549
- return components
550
-
551
- def save(self):
552
- folder = 'save_articles/' + self.title
553
- if os.path.exists(folder):
554
- for item in os.listdir(folder):
555
- os.remove(os.path.join(folder, item))
556
- os.makedirs(folder, exist_ok=True)
557
-
558
- save_text = ''
559
- count = 0
560
- if len(self.output_text) > 0:
561
- text_sections = self.output_text.split('\n')
562
- for i in range(len(text_sections)):
563
- if i in self.caps:
564
- if self.show_caps:
565
- md = text_sections[
566
- i] + '\n' + '<div align="center"> <img src="temp_{}_{}.png" width = 500/> {} </div>'.format(
567
- self.show_ids[i] * 1000 + i, self.selected[i],
568
- self.caps[i])
569
- else:
570
- md = text_sections[
571
- i] + '\n' + '<div align="center"> <img src="temp_{}_{}.png" width = 500/> </div>'.format(
572
- self.show_ids[i] * 1000 + i, self.selected[i])
573
- count += 1
574
- else:
575
- md = text_sections[i]
576
-
577
- save_text += md + '\n\n'
578
- save_text = save_text[:-2]
579
-
580
- with open(os.path.join(folder, 'io.MD'), 'w') as f:
581
- f.writelines(save_text)
582
-
583
- for k in self.caps.keys():
584
- shutil.copy(
585
- os.path.join(
586
- 'articles', self.title,
587
- f'temp_{self.show_ids[k] * 1000 + k}_{self.selected[k]}.png'
588
- ), folder)
589
- archived = shutil.make_archive(folder, 'zip', folder)
590
- return archived
591
-
592
- def get_context_emb(self, state, img_list):
593
- prompt = state.get_prompt()
594
- print(prompt)
595
- prompt_segs = prompt.split('<Img><ImageHere></Img>')
596
-
597
- assert len(prompt_segs) == len(
598
- img_list
599
- ) + 1, "Unmatched numbers of image placeholders and images."
600
- seg_tokens = [
601
- self.llm_model.internlm_tokenizer(seg,
602
- return_tensors="pt",
603
- add_special_tokens=i == 0).to(
604
- self.device).input_ids
605
- for i, seg in enumerate(prompt_segs)
606
- ]
607
- seg_embs = [
608
- self.llm_model.internlm_model.model.embed_tokens(seg_t)
609
- for seg_t in seg_tokens
610
- ]
611
- mixed_embs = [
612
- emb for pair in zip(seg_embs[:-1], img_list) for emb in pair
613
- ] + [seg_embs[-1]]
614
- mixed_embs = torch.cat(mixed_embs, dim=1)
615
- return mixed_embs
616
-
617
- def chat_ask(self, state, img_list, text, image):
618
- print(1111)
619
- state.skip_next = False
620
- if len(text) <= 0 and image is None:
621
- state.skip_next = True
622
- return (state, img_list, state.to_gradio_chatbot(), "",
623
- None) + (no_change_btn, ) * 2
624
-
625
- if image is not None:
626
- image_pt = self.vis_processor(image).unsqueeze(0).to(0)
627
- image_emb = self.llm_model.encode_img(image_pt)
628
- img_list.append(image_emb)
629
-
630
- state.append_message(state.roles[0],
631
- ["<Img><ImageHere></Img>", image])
632
-
633
- if len(state.messages) > 0 and state.messages[-1][0] == state.roles[
634
- 0] and isinstance(state.messages[-1][1], list):
635
- #state.messages[-1][1] = ' '.join([state.messages[-1][1], text])
636
- state.messages[-1][1][0] = ' '.join(
637
- [state.messages[-1][1][0], text])
638
- else:
639
- state.append_message(state.roles[0], text)
640
-
641
- print(state.messages)
642
-
643
- state.append_message(state.roles[1], None)
644
-
645
- return (state, img_list, state.to_gradio_chatbot(), "",
646
- None) + (disable_btn, ) * 2
647
-
648
- def generate_with_callback(self, callback=None, **kwargs):
649
- kwargs.setdefault("stopping_criteria",
650
- transformers.StoppingCriteriaList())
651
- kwargs["stopping_criteria"].append(Stream(callback_func=callback))
652
- with torch.no_grad():
653
- with self.llm_model.maybe_autocast():
654
- self.llm_model.internlm_model.generate(**kwargs)
655
-
656
- def generate_with_streaming(self, **kwargs):
657
- return Iteratorize(self.generate_with_callback, kwargs, callback=None)
658
-
659
- def chat_answer(self, state, img_list, max_output_tokens,
660
- repetition_penalty, num_beams, do_sample):
661
- # text = '图片中是一幅油画,描绘了红军长征的场景。画面中,一群红军战士正在穿过一片草地,他们身后的旗帜在风中飘扬。'
662
- # for i in range(len(text)):
663
- # state.messages[-1][-1] = text[:i+1] + "▌"
664
- # yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
665
- # state.messages[-1][-1] = text[:i + 1]
666
- # yield (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
667
- # return
668
-
669
- if state.skip_next:
670
- return (state, state.to_gradio_chatbot()) + (no_change_btn, ) * 2
671
-
672
- embs = self.get_context_emb(state, img_list)
673
- if chat_stream_output:
674
- generate_params = dict(
675
- inputs_embeds=embs,
676
- num_beams=num_beams,
677
- do_sample=do_sample,
678
- stopping_criteria=self.stopping_criteria,
679
- repetition_penalty=float(repetition_penalty),
680
- max_length=max_output_tokens,
681
- bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
682
- eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
683
- pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
684
- )
685
- state.messages[-1][-1] = "▌"
686
- with self.generate_with_streaming(**generate_params) as generator:
687
- for output in generator:
688
- decoded_output = self.llm_model.internlm_tokenizer.decode(
689
- output[1:])
690
- if output[-1] in [
691
- self.llm_model.internlm_tokenizer.eos_token_id, 333, 497
692
- ]:
693
- break
694
- state.messages[-1][-1] = decoded_output + "▌"
695
- yield (state,
696
- state.to_gradio_chatbot()) + (disable_btn, ) * 2
697
- time.sleep(0.03)
698
- state.messages[-1][-1] = state.messages[-1][-1][:-1]
699
- yield (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
700
- return
701
- else:
702
- outputs = self.llm_model.internlm_model.generate(
703
- inputs_embeds=embs,
704
- max_new_tokens=max_output_tokens,
705
- stopping_criteria=self.stopping_criteria,
706
- num_beams=num_beams,
707
- #temperature=float(temperature),
708
- do_sample=do_sample,
709
- repetition_penalty=float(repetition_penalty),
710
- bos_token_id=self.llm_model.internlm_tokenizer.bos_token_id,
711
- eos_token_id=self.llm_model.internlm_tokenizer.eos_token_id,
712
- pad_token_id=self.llm_model.internlm_tokenizer.pad_token_id,
713
- )
714
-
715
- output_token = outputs[0]
716
- if output_token[0] == 0:
717
- output_token = output_token[1:]
718
- output_text = self.llm_model.internlm_tokenizer.decode(
719
- output_token, add_special_tokens=False)
720
- print(output_text)
721
- output_text = output_text.split('<TOKENS_UNUSED_1>')[
722
- 0] # remove the stop sign '###'
723
- output_text = output_text.split('Assistant:')[-1].strip()
724
- output_text = output_text.replace("<s>", "")
725
- state.messages[-1][1] = output_text
726
-
727
- return (state, state.to_gradio_chatbot()) + (enable_btn, ) * 2
728
-
729
- def clear_answer(self, state):
730
- state.messages[-1][-1] = None
731
- return (state, state.to_gradio_chatbot())
732
-
733
- def chat_clear_history(self):
734
- state = CONV_VISION_7132_v2.copy()
735
- return (state, [], state.to_gradio_chatbot(), "",
736
- None) + (disable_btn, ) * 2
737
-
738
-
739
- def load_demo():
740
- state = CONV_VISION_7132_v2.copy()
741
-
742
- return (state, [], gr.Chatbot.update(visible=True),
743
- gr.Textbox.update(visible=True), gr.Button.update(visible=True),
744
- gr.Row.update(visible=True), gr.Accordion.update(visible=True))
745
-
746
-
747
- def change_language(lang):
748
- if lang == '中文':
749
- lang_btn = gr.update(value='English')
750
- title = gr.update(label='根据给定标题写一个图文并茂的文章:')
751
- btn = gr.update(value='生成')
752
- parameter_article = gr.update(label='高级设置')
753
-
754
- beam = gr.update(label='集束大小')
755
- repetition = gr.update(label='重复惩罚')
756
- text_num = gr.update(label='最多输出字数')
757
- msi = gr.update(label='模型选图')
758
- random = gr.update(label='采样')
759
- img_num = gr.update(label='生成文章后,可选择全文配图数量')
760
- adjust_btn = gr.update(value='固定数量配图')
761
- cap_searchs, editers = [], []
762
- for _ in range(max_section):
763
- cap_searchs.append(gr.update(value='搜索'))
764
- editers.append(gr.update(label='编辑'))
765
-
766
- save_btn = gr.update(value='文章下载')
767
- save_file = gr.update(label='文章下载')
768
-
769
- parameter_chat = gr.update(label='参数')
770
- chat_text_num = gr.update(label='最多输出字数')
771
- chat_beam = gr.update(label='集束大小')
772
- chat_repetition = gr.update(label='重复惩罚')
773
- chat_random = gr.update(label='采样')
774
-
775
- chat_textbox = gr.update(placeholder='输入聊天内容并回车')
776
- submit_btn = gr.update(value='提交')
777
- regenerate_btn = gr.update(value='🔄 重新生成')
778
- clear_btn = gr.update(value='🗑️ 清空聊天框')
779
- elif lang == 'English':
780
- lang_btn = gr.update(value='中文')
781
- title = gr.update(
782
- label='Write an illustrated article based on the given title:')
783
- btn = gr.update(value='Submit')
784
- parameter_article = gr.update(label='Advanced Settings')
785
-
786
- beam = gr.update(label='Beam Size')
787
- repetition = gr.update(label='Repetition_penalty')
788
- text_num = gr.update(label='Max output tokens')
789
- msi = gr.update(label='Model selects images')
790
- random = gr.update(label='Do_sample')
791
- img_num = gr.update(
792
- label=
793
- 'Select the number of the inserted image after article generation.'
794
- )
795
- adjust_btn = gr.update(value='Insert a fixed number of images')
796
- cap_searchs, editers = [], []
797
- for _ in range(max_section):
798
- cap_searchs.append(gr.update(value='Search'))
799
- editers.append(gr.update(label='edit'))
800
-
801
- save_btn = gr.update(value='Save article')
802
- save_file = gr.update(label='Save article')
803
-
804
- parameter_chat = gr.update(label='Parameters')
805
- chat_text_num = gr.update(label='Max output tokens')
806
- chat_beam = gr.update(label='Beam Size')
807
- chat_repetition = gr.update(label='Repetition_penalty')
808
- chat_random = gr.update(label='Do_sample')
809
-
810
- chat_textbox = gr.update(placeholder='Enter text and press ENTER')
811
- submit_btn = gr.update(value='Submit')
812
- regenerate_btn = gr.update(value='🔄 Regenerate')
813
- clear_btn = gr.update(value='🗑️ Clear history')
814
-
815
- return [lang_btn, title, btn, parameter_article, beam, repetition, text_num, msi, random, img_num, adjust_btn] +\
816
- cap_searchs + editers + [save_btn, save_file] +[parameter_chat, chat_text_num, chat_beam, chat_repetition, chat_random] + \
817
- [chat_textbox, submit_btn, regenerate_btn, clear_btn]
818
-
819
-
820
- parser = argparse.ArgumentParser()
821
- parser.add_argument("--folder", default='internlm/internlm-xcomposer-7b')
822
- parser.add_argument("--private", default=False, action='store_true')
823
- args = parser.parse_args()
824
- demo_ui = Demo_UI(args.folder)
825
-
826
- with gr.Blocks(css=custom_css, title='浦语·灵笔 (InternLM-XComposer)') as demo:
827
- with gr.Row():
828
- with gr.Column(scale=20):
829
- #gr.HTML("""<h1 align="center" id="space-title" style="font-size:35px;">🤗 浦语·灵笔 (InternLM-XComposer)</h1>""")
830
- gr.HTML(
831
- """<h1 align="center"><img src="https://raw.githubusercontent.com/panzhang0212/interleaved_io/main/logo.png", alt="InternLM-XComposer" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>"""
832
- )
833
- with gr.Column(scale=1, min_width=100):
834
- lang_btn = gr.Button("中文")
835
-
836
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
837
- with gr.TabItem("📝 创作图文并茂文章 (Write Interleaved-text-image Article)"):
838
- with gr.Row():
839
- title = gr.Textbox(
840
- label=
841
- 'Write an illustrated article based on the given title:',
842
- scale=2)
843
- btn = gr.Button("Submit", scale=1)
844
-
845
- with gr.Row():
846
- img_num = gr.Slider(
847
- minimum=1.0,
848
- maximum=30.0,
849
- value=5.0,
850
- step=1.0,
851
- scale=2,
852
- label=
853
- 'Select the number of the inserted image after article generation.'
854
- )
855
- adjust_btn = gr.Button('Insert a fixed number of images',
856
- interactive=False,
857
- scale=1)
858
-
859
- with gr.Row():
860
- with gr.Column(scale=1):
861
- with gr.Accordion("Advanced Settings",
862
- open=False,
863
- visible=True) as parameter_article:
864
- beam = gr.Slider(minimum=1.0,
865
- maximum=6.0,
866
- value=5.0,
867
- step=1.0,
868
- label='Beam Size')
869
- repetition = gr.Slider(minimum=0.0,
870
- maximum=10.0,
871
- value=5.0,
872
- step=0.1,
873
- label='Repetition_penalty')
874
- text_num = gr.Slider(minimum=100.0,
875
- maximum=2000.0,
876
- value=1000.0,
877
- step=1.0,
878
- label='Max output tokens')
879
- msi = gr.Checkbox(value=True,
880
- label='Model selects images')
881
- random = gr.Checkbox(label='Do_sample')
882
-
883
- with gr.Column(scale=1):
884
- gr.Examples(
885
- examples=[["又见��煌"], ["星链新闻稿"], ["如何养好一只宠物"],
886
- ["Shanghai Travel Guide in English"], ["Travel guidance of London in English"], ["Advertising for Genshin Impact in English"]],
887
- inputs=[title],
888
- )
889
-
890
- articles = []
891
- gallerys = []
892
- add_delete_btns = []
893
- cap_textboxs = []
894
- cap_searchs = []
895
- editers = []
896
- with gr.Column():
897
- for i in range(max_section):
898
- with gr.Row():
899
- visible = True if i == 0 else False
900
- with gr.Column(scale=2):
901
- article = gr.Markdown(visible=visible,
902
- elem_classes='feedback')
903
- articles.append(article)
904
-
905
- with gr.Column(scale=1):
906
- with gr.Accordion('edit',
907
- open=False,
908
- visible=False) as editer:
909
- with gr.Row():
910
- cap_textbox = gr.Textbox(show_label=False,
911
- interactive=True,
912
- scale=6,
913
- visible=False)
914
- cap_search = gr.Button(value="Search",
915
- visible=False,
916
- scale=1)
917
- with gr.Row():
918
- gallery = gr.Gallery(visible=False,
919
- columns=2,
920
- height='auto')
921
-
922
- add_delete_btn = gr.Button(visible=False)
923
-
924
- gallery.select(demo_ui.replace_image, [
925
- articles[i],
926
- gr.Number(value=i, visible=False)
927
- ], articles[i])
928
- gallerys.append(gallery)
929
- add_delete_btns.append(add_delete_btn)
930
-
931
- cap_textboxs.append(cap_textbox)
932
- cap_searchs.append(cap_search)
933
- editers.append(editer)
934
-
935
- save_btn = gr.Button("Save article")
936
- save_file = gr.File(label="Save article")
937
-
938
- for i in range(max_section):
939
- add_delete_btns[i].click(demo_ui.add_delete_image,
940
- inputs=[
941
- articles[i],
942
- add_delete_btns[i],
943
- gr.Number(value=i,
944
- visible=False)
945
- ],
946
- outputs=[
947
- articles[i], gallerys[i],
948
- add_delete_btns[i],
949
- cap_textboxs[i],
950
- cap_searchs[i]
951
- ])
952
- cap_searchs[i].click(demo_ui.search_image,
953
- inputs=[
954
- cap_textboxs[i],
955
- gr.Number(value=i, visible=False)
956
- ],
957
- outputs=gallerys[i])
958
-
959
- btn.click(
960
- demo_ui.generate_article,
961
- inputs=[title, beam, repetition, text_num, msi, random],
962
- outputs=articles + gallerys + add_delete_btns +
963
- cap_textboxs + cap_searchs + editers + [btn, adjust_btn])
964
- # cap_btn.click(demo_ui.add_delete_caption, inputs=None, outputs=articles)
965
- save_btn.click(demo_ui.save, inputs=None, outputs=save_file)
966
- adjust_btn.click(demo_ui.adjust_img,
967
- inputs=img_num,
968
- outputs=articles + gallerys +
969
- add_delete_btns + cap_textboxs + cap_searchs +
970
- editers)
971
-
972
- with gr.TabItem("💬 多模态对话 (Multimodal Chat)", elem_id="chat", id=0):
973
- chat_state = gr.State()
974
- img_list = gr.State()
975
- with gr.Row():
976
- with gr.Column(scale=3):
977
- imagebox = gr.Image(type="pil")
978
-
979
- with gr.Accordion("Parameters", open=True,
980
- visible=False) as parameter_row:
981
- chat_max_output_tokens = gr.Slider(
982
- minimum=0,
983
- maximum=1024,
984
- value=512,
985
- step=64,
986
- interactive=True,
987
- label="Max output tokens",
988
- )
989
- chat_num_beams = gr.Slider(
990
- minimum=1,
991
- maximum=5,
992
- value=3,
993
- step=1,
994
- interactive=True,
995
- label="Beam Size",
996
- )
997
- chat_repetition_penalty = gr.Slider(
998
- minimum=1,
999
- maximum=5,
1000
- value=1,
1001
- step=0.1,
1002
- interactive=True,
1003
- label="Repetition_penalty",
1004
- )
1005
- # chat_temperature = gr.Slider(minimum=0, maximum=1, value=1, step=0.1, interactive=True,
1006
- # label="Temperature", )
1007
- chat_do_sample = gr.Checkbox(interactive=True,
1008
- value=True,
1009
- label="Do_sample")
1010
-
1011
- with gr.Column(scale=6):
1012
- chatbot = grChatbot(elem_id="chatbot",
1013
- visible=False,
1014
- height=750)
1015
- with gr.Row():
1016
- with gr.Column(scale=8):
1017
- chat_textbox = gr.Textbox(
1018
- show_label=False,
1019
- placeholder="Enter text and press ENTER",
1020
- visible=False).style(container=False)
1021
- with gr.Column(scale=1, min_width=60):
1022
- submit_btn = gr.Button(value="Submit",
1023
- visible=False)
1024
- with gr.Row(visible=True) as button_row:
1025
- regenerate_btn = gr.Button(value="🔄 Regenerate",
1026
- interactive=False)
1027
- clear_btn = gr.Button(value="🗑️ Clear history",
1028
- interactive=False)
1029
-
1030
- btn_list = [regenerate_btn, clear_btn]
1031
- parameter_list = [
1032
- chat_max_output_tokens, chat_repetition_penalty,
1033
- chat_num_beams, chat_do_sample
1034
- ]
1035
-
1036
- chat_textbox.submit(
1037
- demo_ui.chat_ask,
1038
- [chat_state, img_list, chat_textbox, imagebox],
1039
- [chat_state, img_list, chatbot, chat_textbox, imagebox] +
1040
- btn_list).then(demo_ui.chat_answer,
1041
- [chat_state, img_list] + parameter_list,
1042
- [chat_state, chatbot] + btn_list)
1043
- submit_btn.click(
1044
- demo_ui.chat_ask,
1045
- [chat_state, img_list, chat_textbox, imagebox],
1046
- [chat_state, img_list, chatbot, chat_textbox, imagebox] +
1047
- btn_list).then(demo_ui.chat_answer,
1048
- [chat_state, img_list] + parameter_list,
1049
- [chat_state, chatbot] + btn_list)
1050
-
1051
- regenerate_btn.click(demo_ui.clear_answer, chat_state,
1052
- [chat_state, chatbot]).then(
1053
- demo_ui.chat_answer,
1054
- [chat_state, img_list] + parameter_list,
1055
- [chat_state, chatbot] + btn_list)
1056
- clear_btn.click(
1057
- demo_ui.chat_clear_history, None,
1058
- [chat_state, img_list, chatbot, chat_textbox, imagebox] +
1059
- btn_list)
1060
-
1061
- demo.load(load_demo, None, [
1062
- chat_state, img_list, chatbot, chat_textbox, submit_btn,
1063
- parameter_row
1064
- ])
1065
-
1066
- lang_btn.click(change_language, inputs=lang_btn, outputs=[lang_btn, title, btn, parameter_article] +\
1067
- [beam, repetition, text_num, msi, random, img_num, adjust_btn] + cap_searchs + editers +\
1068
- [save_btn, save_file] + [parameter_row, chat_max_output_tokens, chat_num_beams, chat_repetition_penalty, chat_do_sample] +\
1069
- [chat_textbox, submit_btn, regenerate_btn, clear_btn])
1070
- demo.queue(concurrency_count=8, status_update_rate=10, api_open=False)
1071
 
1072
  if __name__ == "__main__":
1073
- demo.launch()
1074
-
1075
-
 
1
+ from flask import Flask, render_template
 
 
 
 
2
 
3
+ app = Flask(__name__)
 
 
 
 
 
 
 
 
 
 
4
 
 
5
 
6
+ @app.route("/")
7
+ def index():
8
+ return render_template("index.html")
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  if __name__ == "__main__":
12
+ app.run(debug=False, port=7860, host="0.0.0.0")