from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor from langchain.tools.retriever import create_retriever_tool from langchain import hub from langchain.agents import AgentExecutor, create_openai_tools_agent import os import gradio as gr # The Agent retriever is based on: https://python.langchain.com/docs/use_cases/question_answering/conversational_retrieval_agents?ref=blog.langchain.dev # The chat history is based on: https://python.langchain.com/docs/use_cases/question_answering/chat_history # Inspired by https://github.com/Niez-Gharbi/PDF-RAG-with-Llama2-and-Gradio/tree/master # Inspired by https://github.com/mirabdullahyaser/Retrieval-Augmented-Generation-Engine-with-LangChain-and-Streamlit/tree/master class PDFChatBot: # Initialize the class with the api_key and the model_name def __init__(self, api_key): self.processed = False self.final_agent = None self.chat_history = [] self.api_key = api_key self.llm = ChatOpenAI(openai_api_key=self.api_key, temperature=0, model_name="gpt-3.5-turbo-0125") # add text to Gradio text block (not needed without Gradio) def add_text(self, history, text): if not text: raise gr.Error("Please enter text.") history.append((text, '')) return history # Load a pdf document with langchain textloader def load_document(self, file_name): loader = PyPDFLoader(file_name) raw_document = loader.load() return raw_document # Split the document def split_documents(self, raw_document): text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100, length_function=len, is_separator_regex=False, separators=["\n\n", "\n", " ", ""]) chunks = text_splitter.split_documents(raw_document) return chunks # Embed the document with OpenAI Embeddings & store it to vectorstore def create_retriever(self, chunks): embedding_func = OpenAIEmbeddings(openai_api_key=self.api_key) # Create a new vectorstore from the chunks vectorstore = FAISS.from_documents(chunks, embedding_func) # Create a retriever basic_retriever = vectorstore.as_retriever() compressor = LLMChainExtractor.from_llm(self.llm) compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=basic_retriever) return basic_retriever # or compression_retriever # Create an agent def create_agent(self, retriever): tool = create_retriever_tool(retriever, f"search_document", f"Searches and returns excerpts from the provided document.") tools = [tool] prompt = hub.pull("hwchase17/openai-tools-agent") agent = create_openai_tools_agent(self.llm, tools, prompt) self.final_agent = AgentExecutor(agent=agent, tools=tools) # Process files def process_file(self, file_name): documents = self.load_document(file_name) texts = self.split_documents(documents) db = self.create_retriever(texts) self.create_agent(db) print("Files successfully processed") # Generate a response and write to memory def generate_response(self, history, query, path): if not self.processed: self.process_file(path) self.processed = True result = self.final_agent.invoke({'input': query, 'chat_history': self.chat_history})['output'] self.chat_history.extend((query, result)) for char in result: # history argument and the subsequent code is only for the purpose of Gradio history[-1][1] += char return history, " "