File size: 25,075 Bytes
fb53ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np
import numpy.random as npr
import copy

from lib.model_zoo.common.get_model import get_model, register
from lib.model_zoo.common import utils

from .optimus_models.tokenization_gpt2 import GPT2Tokenizer

version = '0'
symbol = 'optimus'

@register('optimus_vae', version)
class optimus_vae(nn.Module):
    """VAE with normal prior"""
    def __init__(self, encoder, decoder,  tokenizer_encoder, tokenizer_decoder, args): # 
        super().__init__()
        self.encoder = encoder if isinstance(encoder, nn.Module) else get_model()(encoder)
        self.decoder = decoder if isinstance(decoder, nn.Module) else get_model()(decoder)
        self.tokenizer_encoder = tokenizer_encoder \
            if isinstance(tokenizer_encoder, nn.Module) \
                else get_model()(tokenizer_encoder, verbose=False)
        self.tokenizer_decoder = tokenizer_decoder \
            if isinstance(tokenizer_decoder, nn.Module) \
                else get_model()(tokenizer_decoder, verbose=False)

        gpt2_special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}
        if isinstance(self.tokenizer_encoder, GPT2Tokenizer):
            self.tokenizer_encoder.add_special_tokens(gpt2_special_tokens_dict)
        if isinstance(self.tokenizer_decoder, GPT2Tokenizer):
            self.tokenizer_decoder.add_special_tokens(gpt2_special_tokens_dict)

        self.args = args
        self.nz = args.latent_size

        self.eos_token_id = self.tokenizer_decoder.convert_tokens_to_ids(
            [self.tokenizer_decoder.eos_token])[0]
        self.pad_token_id = self.tokenizer_decoder.convert_tokens_to_ids(
            [self.tokenizer_decoder.pad_token])[0]

        # connector: from Bert hidden units to the latent space
        # self.linear = nn.Linear(args.nz, 2 * args.nz, bias=False)

        # Standard Normal prior
        loc = torch.zeros(self.nz)
        scale = torch.ones(self.nz)
        self.prior = torch.distributions.normal.Normal(loc, scale)

    def connect(self, bert_fea, nsamples=1):
        """
        Returns: Tensor1, Tensor2
            Tensor1: the tensor latent z with shape [batch, nsamples, nz]
            Tensor2: the tenor of KL for each x with shape [batch]
        """

        # (batch_size, nz)

        mean, logvar = self.encoder.linear(bert_fea).chunk(2, -1)
        # pdb.set_trace()
        # mean, logvar = mean.squeeze(0), logvar.squeeze(0)

        # (batch, nsamples, nz)
        z = self.reparameterize(mean, logvar, nsamples)
        KL = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).sum(dim=1)

        return z, KL

    def connect_deterministic(self, bert_fea, nsamples=1):
        """
        Returns: Tensor1, Tensor2
            Tensor1: the tensor latent z with shape [batch, nsamples, nz]
            Tensor2: the tenor of KL for each x with shape [batch]
        """

        # (batch_size, nz)

        mean, logvar = self.encoder.linear(bert_fea).chunk(2, -1)
        # pdb.set_trace()
        # mean, logvar = mean.squeeze(0), logvar.squeeze(0)

        logvar.fill_(.0)
        # (batch, nsamples, nz)
        z = self.reparameterize(mean, logvar, nsamples)
        KL = 0.5 * (mean.pow(2) + logvar.exp() - logvar - 1).sum(dim=1)

        return z, KL

    def reparameterize(self, mu, logvar, nsamples=1):
        """sample from posterior Gaussian family
        Args:
            mu: Tensor
                Mean of gaussian distribution with shape (batch, nz)
            logvar: Tensor
                logvar of gaussian distibution with shape (batch, nz)
        Returns: Tensor
            Sampled z with shape (batch, nsamples, nz)
        """
        batch_size, nz = mu.size()
        std = logvar.mul(0.5).exp()

        mu_expd = mu.unsqueeze(1).expand(batch_size, nsamples, nz)
        std_expd = std.unsqueeze(1).expand(batch_size, nsamples, nz)

        eps = torch.zeros_like(std_expd).normal_()

        return mu_expd + torch.mul(eps, std_expd)

    def forward(self, inputs, labels):

        # pdb.set_trace()   
        
        attention_mask=(inputs > 0).float()
        # logger.info(inputs)
        # logger.info(attention_mask)
        # logger.info(labels)
        reconstrution_mask=(labels != 50257).float() # 50257 is the padding token for GPT2
        sent_length = torch.sum(reconstrution_mask, dim=1)

        
        outputs = self.encoder(inputs, attention_mask)
        pooled_hidden_fea = outputs[1]  # model outputs are always tuple in pytorch-transformers (see doc)

        if self.args.fb_mode==0: 
            # Connect hidden feature to the latent space
            latent_z, loss_kl = self.connect(pooled_hidden_fea)
            latent_z = latent_z.squeeze(1)

            
            # Decoding
            outputs = self.decoder(input_ids=labels, past=latent_z, labels=labels, label_ignore=self.pad_token_id)
            loss_rec = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
    
        elif self.args.fb_mode==1:  
            # Connect hidden feature to the latent space
            mu, logvar = self.encoder.linear(pooled_hidden_fea).chunk(2, -1)
            latent_z = self.reparameterize(mu, logvar, nsamples=1)
            latent_z = latent_z.squeeze(1)
            loss_kl = 0.5 * (mu.pow(2) + logvar.exp() - logvar - 1)
            kl_mask = (loss_kl > self.args.dim_target_kl).float()
            loss_kl = (kl_mask * loss_kl).sum(dim=1)

            # pdb.set_trace()
            # past = self.decoder.linear(latent_z)
            # Decoding
            outputs = self.decoder(input_ids=labels, past=latent_z, labels=labels, label_ignore=self.pad_token_id)
            loss_rec = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)

        elif self.args.fb_mode==2: 
            # Connect hidden feature to the latent space
            latent_z, loss_kl = self.connect_deterministic(pooled_hidden_fea)
            latent_z = latent_z.squeeze(1)

            # past = self.decoder.linear(latent_z)
            # Decoding
            outputs = self.decoder(input_ids=labels, past=latent_z, labels=labels, label_ignore=self.pad_token_id)
            loss_rec = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)

            
        # pdb.set_trace()
        if self.args.length_weighted_loss:
            loss = loss_rec / sent_length + self.args.beta * loss_kl
        else:
            loss = loss_rec + self.args.beta * loss_kl 


        return loss_rec, loss_kl, loss

    def encoder_sample(self, bert_fea, nsamples):
        """sampling from the encoder
        Returns: Tensor1
            Tensor1: the tensor latent z with shape [batch, nsamples, nz]
        """

        # (batch_size, nz)

        mu, logvar = self.encoder.linear(bert_fea).chunk(2, -1)
        mu, logvar = mu.squeeze(0), logvar.squeeze(0)

        # (batch, nsamples, nz)
        z = self.reparameterize(mu, logvar, nsamples)

        return z, (mu, logvar)

    def encode_stats(self, x):
        """
        Returns: Tensor1, Tensor2
            Tensor1: the mean of latent z with shape [batch, nz]
            Tensor2: the logvar of latent z with shape [batch, nz]
        """

        return self.encoder.encode_stats(x)

    def decode(self, z, strategy, K=10):
        """generate samples from z given strategy
        Args:
            z: [batch, nsamples, nz]
            strategy: "beam" or "greedy" or "sample"
            K: the beam width parameter
        Returns: List1
            List1: a list of decoded word sequence
        """

        if strategy == "beam":
            return self.decoder.beam_search_decode(z, K)
        elif strategy == "greedy":
            return self.decoder.greedy_decode(z)
        elif strategy == "sample":
            return self.decoder.sample_decode(z)
        else:
            raise ValueError("the decoding strategy is not supported")

    def reconstruct(self, x, decoding_strategy="greedy", K=5):
        """reconstruct from input x
        Args:
            x: (batch, *)
            decoding_strategy: "beam" or "greedy" or "sample"
            K: the beam width parameter
        Returns: List1
            List1: a list of decoded word sequence
        """
        z = self.sample_from_inference(x).squeeze(1)

        return self.decode(z, decoding_strategy, K)

    def log_probability(self, x, z):
        """Cross Entropy in the language case
        Args:
            x: (batch_size, seq_len)
            z: (batch_size, n_sample, nz)
        Returns:
            log_p: (batch_size, n_sample).
                log_p(x|z) across different x and z
        """
        outputs = self.decoder(input_ids=x, past=z, labels=x, label_ignore=self.pad_token_id)
        loss_rec = outputs[0]
        return -loss_rec

    def loss_iw(self, x0, x1, nsamples=50, ns=1):
        """
        Args:
            x: if the data is constant-length, x is the data tensor with
                shape (batch, *). Otherwise x is a tuple that contains
                the data tensor and length list
        Returns: Tensor1, Tensor2, Tensor3
            Tensor1: total loss [batch]
            Tensor2: reconstruction loss shape [batch]
            Tensor3: KL loss shape [batch]
        """

        # encoding into bert features
        bert_fea = self.encoder(x0)[1]

        # (batch_size, nz)

        mu, logvar = self.encoder.linear(bert_fea).chunk(2, -1)
        

        ##################
        # compute KL
        ##################
        # pdb.set_trace()
        KL = 0.5 * (mu.pow(2) + logvar.exp() - logvar - 1).sum(dim=1)

        # mu, logvar = mu.squeeze(0), logvar.squeeze(0)
        ll_tmp, rc_tmp = [], []
        for _ in range(int(nsamples / ns)):

            # (batch, nsamples, nz)
            z = self.reparameterize(mu, logvar, ns)
            # past = self.decoder.linear(z)
            past = z
         
            # [batch, nsamples]
            log_prior = self.eval_prior_dist(z)
            log_gen = self.eval_cond_ll(x1, past)
            log_infer = self.eval_inference_dist(z, (mu, logvar))

            # pdb.set_trace()
            log_gen = log_gen.unsqueeze(0).contiguous().view(z.shape[0],-1)


            # pdb.set_trace()
            rc_tmp.append(log_gen)
            ll_tmp.append(log_gen + log_prior - log_infer)

            
        
        log_prob_iw = log_sum_exp(torch.cat(ll_tmp, dim=-1), dim=-1) - math.log(nsamples)
        log_gen_iw = torch.mean(torch.cat(rc_tmp, dim=-1), dim=-1)

        return log_prob_iw, log_gen_iw , KL

    def nll_iw(self, x0, x1, nsamples, ns=1):
        """compute the importance weighting estimate of the log-likelihood
        Args:
            x0, x1:  two different tokenization results of x, where x is the data tensor with shape (batch, *). 
            nsamples: Int
                the number of samples required to estimate marginal data likelihood
        Returns: Tensor1
            Tensor1: the estimate of log p(x), shape [batch]
        """

        # compute iw every ns samples to address the memory issue
        # nsamples = 500, ns = 100
        # nsamples = 500, ns = 10

        # TODO: note that x is forwarded twice in self.encoder.sample(x, ns) and self.eval_inference_dist(x, z, param)
        #.      this problem is to be solved in order to speed up

        tmp = []
        for _ in range(int(nsamples / ns)):
            # [batch, ns, nz]

            # Chunyuan:
            # encoding into bert features
            pooled_hidden_fea = self.encoder(x0)[1]

            # param is the parameters required to evaluate q(z|x)
            z, param = self.encoder_sample(pooled_hidden_fea, ns)

            # [batch, ns]
            log_comp_ll = self.eval_complete_ll(x1, z)
            log_infer_ll = self.eval_inference_dist(z, param)

            tmp.append(log_comp_ll - log_infer_ll)

        ll_iw = log_sum_exp(torch.cat(tmp, dim=-1), dim=-1) - math.log(nsamples)

        return ll_iw

    def KL(self, x):
        _, KL = self.encode(x, 1)

        return KL

    def eval_prior_dist(self, zrange):
        """perform grid search to calculate the true posterior
        Args:
            zrange: tensor
                different z points that will be evaluated, with
                shape (k^2, nz), where k=(zmax - zmin)/space
        """

        # (k^2)
        return self.prior.log_prob(zrange).sum(dim=-1)

    def eval_complete_ll(self, x, z):
        """compute log p(z,x)
        Args:
            x: Tensor
                input with shape [batch, seq_len]
            z: Tensor
                evaluation points with shape [batch, nsamples, nz]
        Returns: Tensor1
            Tensor1: log p(z,x) Tensor with shape [batch, nsamples]
        """

        # [batch, nsamples]
        log_prior = self.eval_prior_dist(z)
        log_gen = self.eval_cond_ll(x, z)

        return log_prior + log_gen

    def eval_cond_ll(self, x, z):
        """compute log p(x|z)
        """
        x_shape = list(x.size())
        z_shape = list(z.size())
        if len(z_shape) == 3:
            x = x.unsqueeze(1).repeat(1, z_shape[1], 1).contiguous().view(x_shape[0]*z_shape[1], x_shape[-1]) 
            z = z.contiguous().view(x_shape[0]*z_shape[1], z_shape[-1]) 

        return self.log_probability(x, z)

    def eval_log_model_posterior(self, x, grid_z):
        """perform grid search to calculate the true posterior
         this function computes p(z|x)
        Args:
            grid_z: tensor
                different z points that will be evaluated, with
                shape (k^2, nz), where k=(zmax - zmin)/pace
        Returns: Tensor
            Tensor: the log posterior distribution log p(z|x) with
                    shape [batch_size, K^2]
        """
        try:
            batch_size = x.size(0)
        except:
            batch_size = x[0].size(0)

        # (batch_size, k^2, nz)
        grid_z = grid_z.unsqueeze(0).expand(batch_size, *grid_z.size()).contiguous()

        # (batch_size, k^2)
        log_comp = self.eval_complete_ll(x, grid_z)

        # normalize to posterior
        log_posterior = log_comp - log_sum_exp(log_comp, dim=1, keepdim=True)

        return log_posterior

    def sample_from_inference(self, x, nsamples=1):
        """perform sampling from inference net
        Returns: Tensor
            Tensor: samples from infernece nets with
                shape (batch_size, nsamples, nz)
        """
        z, _ = self.encoder.sample(x, nsamples)

        return z

    def sample_from_posterior(self, x, nsamples):
        """perform MH sampling from model posterior
        Returns: Tensor
            Tensor: samples from model posterior with
                shape (batch_size, nsamples, nz)
        """

        # use the samples from inference net as initial points
        # for MCMC sampling. [batch_size, nsamples, nz]
        cur = self.encoder.sample_from_inference(x, 1)
        cur_ll = self.eval_complete_ll(x, cur)
        total_iter = self.args.mh_burn_in + nsamples * self.args.mh_thin
        samples = []
        for iter_ in range(total_iter):
            next = torch.normal(mean=cur,
                std=cur.new_full(size=cur.size(), fill_value=self.args.mh_std))
            # [batch_size, 1]
            next_ll = self.eval_complete_ll(x, next)
            ratio = next_ll - cur_ll

            accept_prob = torch.min(ratio.exp(), ratio.new_ones(ratio.size()))

            uniform_t = accept_prob.new_empty(accept_prob.size()).uniform_()

            # [batch_size, 1]
            mask = (uniform_t < accept_prob).float()
            mask_ = mask.unsqueeze(2)

            cur = mask_ * next + (1 - mask_) * cur
            cur_ll = mask * next_ll + (1 - mask) * cur_ll

            if iter_ >= self.args.mh_burn_in and (iter_ - self.args.mh_burn_in) % self.args.mh_thin == 0:
                samples.append(cur.unsqueeze(1))

        return torch.cat(samples, dim=1)

    def calc_model_posterior_mean(self, x, grid_z):
        """compute the mean value of model posterior, i.e. E_{z ~ p(z|x)}[z]
        Args:
            grid_z: different z points that will be evaluated, with
                    shape (k^2, nz), where k=(zmax - zmin)/pace
            x: [batch, *]
        Returns: Tensor1
            Tensor1: the mean value tensor with shape [batch, nz]
        """

        # [batch, K^2]
        log_posterior = self.eval_log_model_posterior(x, grid_z)
        posterior = log_posterior.exp()

        # [batch, nz]
        return torch.mul(posterior.unsqueeze(2), grid_z.unsqueeze(0)).sum(1)

    def calc_infer_mean(self, x):
        """
        Returns: Tensor1
            Tensor1: the mean of inference distribution, with shape [batch, nz]
        """

        mean, logvar = self.encoder.forward(x)

        return mean

    def eval_inference_dist(self, z, param):
        """this function computes log q(z | x)
        Args:
            z: tensor
                different z points that will be evaluated, with
                shape [batch, nsamples, nz]
        Returns: Tensor1
            Tensor1: log q(z|x) with shape [batch, nsamples]
        """

        nz = z.size(2)
        mu, logvar = param

        # (batch_size, 1, nz)
        mu, logvar = mu.unsqueeze(1), logvar.unsqueeze(1)
        var = logvar.exp()

        # (batch_size, nsamples, nz)
        dev = z - mu

        # (batch_size, nsamples)
        log_density = -0.5 * ((dev ** 2) / var).sum(dim=-1) - \
            0.5 * (nz * math.log(2 * math.pi) + logvar.sum(-1))

        return log_density

    def calc_mi(self, test_data_batch, args):
        # calc_mi_v3
        import math 
        from modules.utils import log_sum_exp

        mi = 0
        num_examples = 0

        mu_batch_list, logvar_batch_list = [], []
        neg_entropy = 0.
        for batch_data in test_data_batch:

            x0, _, _ = batch_data
            x0 = x0.to(args.device)

            # encoding into bert features
            bert_fea = self.encoder(x0)[1]

            (batch_size, nz)
            mu, logvar = self.encoder.linear(bert_fea).chunk(2, -1)

            x_batch, nz = mu.size()

            #print(x_batch, end=' ')

            num_examples += x_batch

            # E_{q(z|x)}log(q(z|x)) = -0.5*nz*log(2*\pi) - 0.5*(1+logvar).sum(-1)

            neg_entropy += (-0.5 * nz * math.log(2 * math.pi)- 0.5 * (1 + logvar).sum(-1)).sum().item()
            mu_batch_list += [mu.cpu()]
            logvar_batch_list += [logvar.cpu()]

            pdb.set_trace()

        neg_entropy = neg_entropy / num_examples
        ##print()

        num_examples = 0
        log_qz = 0.
        for i in range(len(mu_batch_list)):
            ###############
            # get z_samples
            ###############
            mu, logvar = mu_batch_list[i].cuda(), logvar_batch_list[i].cuda()
            
            # [z_batch, 1, nz]

            z_samples = self.reparameterize(mu, logvar, 1)

            z_samples = z_samples.view(-1, 1, nz)
            num_examples += z_samples.size(0)

            ###############
            # compute density
            ###############
            # [1, x_batch, nz]
            #mu, logvar = mu_batch_list[i].cuda(), logvar_batch_list[i].cuda()
            #indices = list(np.random.choice(np.arange(len(mu_batch_list)), 10)) + [i]
            indices = np.arange(len(mu_batch_list))
            mu = torch.cat([mu_batch_list[_] for _ in indices], dim=0).cuda()
            logvar = torch.cat([logvar_batch_list[_] for _ in indices], dim=0).cuda()
            x_batch, nz = mu.size()

            mu, logvar = mu.unsqueeze(0), logvar.unsqueeze(0)
            var = logvar.exp()

            # (z_batch, x_batch, nz)
            dev = z_samples - mu

            # (z_batch, x_batch)
            log_density = -0.5 * ((dev ** 2) / var).sum(dim=-1) - \
                0.5 * (nz * math.log(2 * math.pi) + logvar.sum(-1))

            # log q(z): aggregate posterior
            # [z_batch]
            log_qz += (log_sum_exp(log_density, dim=1) - math.log(x_batch)).sum(-1)

        log_qz /= num_examples
        mi = neg_entropy - log_qz

        return mi

    def calc_au(self, eval_dataloader, args, delta=0.01):
        """compute the number of active units
        """
        cnt = 0
        for batch_data in eval_dataloader:

            x0, _, _ = batch_data
            x0 = x0.to(args.device)

            # encoding into bert features
            bert_fea = self.encoder(x0)[1]

            # (batch_size, nz)
            mean, logvar = self.encoder.linear(bert_fea).chunk(2, -1)

            if cnt == 0:
                means_sum = mean.sum(dim=0, keepdim=True)
            else:
                means_sum = means_sum + mean.sum(dim=0, keepdim=True)
            cnt += mean.size(0)

        # (1, nz)
        mean_mean = means_sum / cnt

        cnt = 0
        for batch_data in eval_dataloader:

            x0, _, _ = batch_data
            x0 = x0.to(args.device)

            # encoding into bert features
            bert_fea = self.encoder(x0)[1]

            # (batch_size, nz)
            mean, _ = self.encoder.linear(bert_fea).chunk(2, -1)

            if cnt == 0:
                var_sum = ((mean - mean_mean) ** 2).sum(dim=0)
            else:
                var_sum = var_sum + ((mean - mean_mean) ** 2).sum(dim=0)
            cnt += mean.size(0)

        # (nz)
        au_var = var_sum / (cnt - 1)

        return (au_var >= delta).sum().item(), au_var

from .optimus_models.optimus_bert import BertForLatentConnector_XX

@register('optimus_bert_connector', version)
class optimus_bert_connector(BertForLatentConnector_XX):
    pass

from .optimus_models.tokenization_bert import BertTokenizer

@register('optimus_bert_tokenizer', version)
class optimus_bert_tokenizer(BertTokenizer):
    pass

from .optimus_models.optimus_gpt2 import GPT2ForLatentConnector_XX

@register('optimus_gpt2_connector', version)
class optimus_gpt2_connector(GPT2ForLatentConnector_XX):
    pass

from .optimus_models.tokenization_gpt2 import GPT2Tokenizer

@register('optimus_gpt2_tokenizer', version)
class optimus_gpt2_tokenizer(GPT2Tokenizer):
    pass

##############################
# some helpers for inference #
##############################

def sample_single_sequence_conditional(
        model,
        context,
        past=None,
        temperature=1,
        top_k=0, 
        top_p=0.0, 
        eos_token=50829, 
        max_length=30, ):
    
    past = past.unsqueeze(0)
    generated = context.unsqueeze(0)
    with torch.no_grad():
        while True:
        # for _ in trange(length):
            inputs = {'input_ids': generated, 'past': past}
            outputs = model(**inputs)
            next_token_logits = outputs[0][0, -1, :] / temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
            if next_token[0].item() == eos_token:
                break
            if generated.shape[1] >= max_length:
                generated[0, -1] = eos_token
                break
    return generated.squeeze(0)

def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits