Spaces:
Runtime error
Runtime error
File size: 17,535 Bytes
fb53ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
from lib.log_service import print_log
version = '0'
symbol = 'vd'
from .diffusion_utils import \
count_params, extract_into_tensor, make_beta_schedule
from .distributions import normal_kl, DiagonalGaussianDistribution
from .autoencoder import AutoencoderKL
from .ema import LitEma
from .sd import highlight_print, DDPM, SD_T2I
@register('vd_basic', version)
class VD_Basic(SD_T2I):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def is_part_of_crossattn(name):
if name.find('.1.norm')!=-1:
return True
if name.find('.1.proj_in')!=-1:
return True
if name.find('.1.transformer_blocks')!=-1:
return True
if name.find('.1.proj_out')!=-1:
return True
return False
self.parameter_group = {
'context' :[v for n, v in self.model.named_parameters() if is_part_of_crossattn(n)],
'data' :[v for n, v in self.model.named_parameters() if not is_part_of_crossattn(n)],
}
self.encode_image = None
self.encode_text = None
self._predict_eps_from_xstart = None
self._prior_bpd = None
self.p_mean_variance = None
self.p_sample = None
self.progressive_denoising = None
self.p_sample_loop = None
self.sample = None
@torch.no_grad()
def encode_input(self, im):
encoder_posterior = self.first_stage_model.encode(im)
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError("Encoder_posterior of type '{}' not yet implemented".format(type(encoder_posterior)))
return z * self.scale_factor
@torch.no_grad()
def decode_latent(self, z):
z = 1. / self.scale_factor * z
return self.first_stage_model.decode(z)
@torch.no_grad()
def clip_encode_vision(self, vision, encode_type='encode_vision'):
clip_encode_type = self.cond_stage_model.encode_type
self.cond_stage_model.encode_type = encode_type
if isinstance(vision, torch.Tensor):
vision = ((vision+1)/2).to('cpu').numpy()
vision = np.transpose(vision, (0, 2, 3, 1))
vision = [vi for vi in vision]
embedding = self.encode_conditioning(vision)
self.cond_stage_model.encode_type = clip_encode_type
return embedding
def encode_conditioning(self, c):
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
return c
# legacy
def get_learned_conditioning(self, c):
return self.encode_conditioning(c)
def forward(self, x, c, noise=None):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
if self.cond_stage_trainable:
c = self.encode_conditioning(c)
return self.p_losses(x, c, t, noise)
@register('vd_dc', version)
class VD_DualContext(SD_T2I):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def is_part_of_trans(name):
if name.find('.1.norm')!=-1:
return True
if name.find('.1.proj_in')!=-1:
return True
if name.find('.1.transformer_blocks')!=-1:
return True
if name.find('.1.proj_out')!=-1:
return True
return False
self.parameter_group = {
'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)],
'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)],
}
def apply_model(self, x_noisy, t, cond, cond_type):
if cond_type in ['prompt', 'text']:
which_attn = 0
elif cond_type in ['vision', 'visual', 'image']:
which_attn = 1
elif isinstance(cond_type, float):
assert 0 < cond_type < 1, \
'A special cond_type that will doing a random mix between two input condition, '\
'rand() < cond_type is text, else visual'
which_attn = cond_type
else:
assert False
return self.model.diffusion_model(x_noisy, t, cond, which_attn=which_attn)
def p_losses(self, x_start, cond, t, noise=None, cond_type=None):
noise = torch.randn_like(x_start) if noise is None else noise
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond, cond_type=cond_type)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
loss_dict['loss_simple'] = loss_simple.mean()
logvar_t = self.logvar[t].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
if self.learn_logvar:
loss_dict['loss_gamma'] = loss.mean()
loss_dict['logvar' ] = self.logvar.data.mean()
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict['loss_vlb'] = loss_vlb
loss += (self.original_elbo_weight * loss_vlb)
loss_dict.update({'Loss': loss})
return loss, loss_dict
@torch.no_grad()
def clip_encode_text(self, text):
clip_encode_type = self.cond_stage_model.encode_type
self.cond_stage_model.encode_type = 'encode_text'
embedding = self.get_learned_conditioning(text)
self.cond_stage_model.encode_type = clip_encode_type
return embedding
@torch.no_grad()
def clip_encode_vision(self, vision, encode_type='encode_vision'):
clip_encode_type = self.cond_stage_model.encode_type
self.cond_stage_model.encode_type = encode_type
if isinstance(vision, torch.Tensor):
vision = ((vision+1)/2).to('cpu').numpy()
vision = np.transpose(vision, (0, 2, 3, 1))
vision = [vi for vi in vision]
embedding = self.get_learned_conditioning(vision)
self.cond_stage_model.encode_type = clip_encode_type
return embedding
def get_learned_conditioning(self, c):
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
return c
def forward(self, x, c, noise=None, cond_type=None):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
return self.p_losses(x, c, t, noise, cond_type=cond_type)
@register('vd', version)
class VD(DDPM):
def __init__(self,
autokl_cfg,
optimus_cfg,
clip_cfg,
scale_factor=1.0,
scale_by_std=False,
*args,
**kwargs):
self.scale_by_std = scale_by_std
super().__init__(*args, **kwargs)
self.autokl = get_model()(autokl_cfg)
self.optimus = get_model()(optimus_cfg)
self.clip = get_model()(clip_cfg)
self.concat_mode = 'crossattn'
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.device = 'cpu'
self.parameter_group = self.create_parameter_group()
def create_parameter_group(self):
def is_part_of_unet_image(name):
if name.find('.unet_image.')!=-1:
return True
return False
def is_part_of_unet_text(name):
if name.find('.unet_text.')!=-1:
return True
return False
def is_part_of_trans(name):
if name.find('.1.norm')!=-1:
return True
if name.find('.1.proj_in')!=-1:
return True
if name.find('.1.transformer_blocks')!=-1:
return True
if name.find('.1.proj_out')!=-1:
return True
return False
parameter_group = {
'image_trans' : [],
'image_rest' : [],
'text_trans' : [],
'text_rest' : [],
'rest' : [],}
for pname, para in self.model.named_parameters():
if is_part_of_unet_image(pname):
if is_part_of_trans(pname):
parameter_group['image_trans'].append(para)
else:
parameter_group['image_rest'].append(para)
elif is_part_of_unet_text(pname):
if is_part_of_trans(pname):
parameter_group['text_trans'].append(para)
else:
parameter_group['text_rest'].append(para)
else:
parameter_group['rest'].append(para)
return parameter_group
def to(self, device):
self.device = device
super().to(device)
@torch.no_grad()
def on_train_batch_start(self, x):
# only for very first batch
if self.scale_by_std:
assert self.scale_factor == 1., \
'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1. / z.flatten().std())
highlight_print("setting self.scale_factor to {}".format(self.scale_factor))
@torch.no_grad()
def autokl_encode(self, image):
encoder_posterior = self.autokl.encode(image)
z = encoder_posterior.sample()
return self.scale_factor * z
@torch.no_grad()
def autokl_decode(self, z):
z = 1. / self.scale_factor * z
return self.autokl.decode(z)
def mask_tokens(inputs, tokenizer, args):
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).to(torch.uint8)
labels[masked_indices==1] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).to(torch.uint8) & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).to(torch.uint8) & masked_indices & ~indices_replaced
indices_random = indices_random
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
@torch.no_grad()
def optimus_encode(self, text):
tokenizer = self.optimus.tokenizer_encoder
token = [tokenizer.tokenize(sentence.lower()) for sentence in text]
token_id = []
for tokeni in token:
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni]
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence)
token_id.append(torch.LongTensor(token_sentence))
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0)
token_id = token_id.to(self.device)
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0).float())[1]
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1)
# z_sampled = self.optimus.reparameterize(z_mu, z_logvar, 1)
return z_mu.squeeze(1)
@torch.no_grad()
def optimus_decode(self, z, temperature=1.0):
bos_token = self.optimus.tokenizer_decoder.encode('<BOS>')
eos_token = self.optimus.tokenizer_decoder.encode('<EOS>')
context_tokens = torch.LongTensor(bos_token).to(z.device)
from .optimus import sample_single_sequence_conditional
sentenses = []
for zi in z:
out = sample_single_sequence_conditional(
model=self.optimus.decoder,
context=context_tokens,
past=zi, temperature=temperature,
top_k=0, top_p=1.0,
max_length=30,
eos_token = eos_token[0],)
text = self.optimus.tokenizer_decoder.decode(out.tolist(), clean_up_tokenization_spaces=True)
text = text.split()[1:-1]
text = ' '.join(text)
sentenses.append(text)
return sentenses
@torch.no_grad()
def clip_encode_text(self, text, encode_type='encode_text'):
swap_type = self.clip.encode_type
self.clip.encode_type = encode_type
embedding = self.clip.encode(text)
self.clip.encode_type = swap_type
return embedding
@torch.no_grad()
def clip_encode_vision(self, vision, encode_type='encode_vision'):
swap_type = self.clip.encode_type
self.clip.encode_type = encode_type
if isinstance(vision, torch.Tensor):
vision = ((vision+1)/2).to('cpu').numpy()
vision = np.transpose(vision, (0, 2, 3, 1))
vision = [vi for vi in vision]
embedding = self.clip.encode(vision)
self.clip.encode_type = swap_type
return embedding
def forward(self, x, c, noise=None, xtype='image', ctype='prompt'):
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long()
return self.p_losses(x, c, t, noise, xtype, ctype)
def apply_model(self, x_noisy, t, cond, xtype='image', ctype='prompt'):
return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype)
def get_image_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def get_text_loss(self, pred, target):
if self.loss_type == 'l1':
loss = (target - pred).abs()
elif self.loss_type == 'l2':
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
return loss
def p_losses(self, x_start, cond, t, noise=None, xtype='image', ctype='prompt'):
noise = torch.randn_like(x_start) if noise is None else noise
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype)
loss_dict = {}
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
if xtype == 'image':
loss_simple = self.get_image_loss(model_output, target, mean=False).mean([1, 2, 3])
elif xtype == 'text':
loss_simple = self.get_text_loss(model_output, target).mean([1])
logvar_t = self.logvar[t].to(self.device)
if logvar_t.sum().item() != 0:
assert False, "Default SD training has logvar fixed at 0"
if self.learn_logvar:
assert False, "Default SD training don't learn logvar"
if self.l_simple_weight != 1:
assert False, "Default SD training always set l_simple_weight==1"
loss = loss_simple.mean()
loss_dict['loss_simple'] = loss_simple.mean().item()
loss_dict['Loss'] = loss.item()
return loss, loss_dict
def apply_model_dc(self, x_noisy, t, first_c, second_c, xtype='image', first_ctype='vision', second_ctype='prompt', mixed_ratio=0.5):
return self.model.diffusion_model.forward_dc(x_noisy, t, first_c, second_c, xtype, first_ctype, second_ctype, mixed_ratio) |