import torch import numpy as np from tqdm import tqdm from functools import partial from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like from .ddim import DDIMSampler class DDIMSampler_VD(DDIMSampler): @torch.no_grad() def sample(self, steps, shape, xt=None, conditioning=None, unconditional_guidance_scale=1., unconditional_conditioning=None, xtype='image', ctype='prompt', eta=0., temperature=1., noise_dropout=0., verbose=True, log_every_t=100,): self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose) print(f'Data shape for DDIM sampling is {shape}, eta {eta}') samples, intermediates = self.ddim_sampling( shape, xt=xt, conditioning=conditioning, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, xtype=xtype, ctype=ctype, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, log_every_t=log_every_t,) return samples, intermediates @torch.no_grad() def ddim_sampling(self, shape, xt=None, conditioning=None, unconditional_guidance_scale=1., unconditional_conditioning=None, xtype='image', ctype='prompt', ddim_use_original_steps=False, timesteps=None, noise_dropout=0., temperature=1., log_every_t=100,): device = self.model.device bs = shape[0] if xt is None: xt = torch.randn(shape, device=device) if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'pred_xt': [], 'pred_x0': []} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] # print(f"Running DDIM Sampling with {total_steps} timesteps") pred_xt = xt iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((bs,), step, device=device, dtype=torch.long) outs = self.p_sample_ddim( pred_xt, conditioning, ts, index, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning=unconditional_conditioning, xtype=xtype, ctype=ctype, use_original_steps=ddim_use_original_steps, noise_dropout=noise_dropout, temperature=temperature,) pred_xt, pred_x0 = outs if index % log_every_t == 0 or index == total_steps - 1: intermediates['pred_xt'].append(pred_xt) intermediates['pred_x0'].append(pred_x0) return pred_xt, intermediates @torch.no_grad() def p_sample_ddim(self, x, conditioning, t, index, unconditional_guidance_scale=1., unconditional_conditioning=None, xtype='image', ctype='prompt', repeat_noise=False, use_original_steps=False, noise_dropout=0., temperature=1.,): b, *_, device = *x.shape, x.device if unconditional_conditioning is None or unconditional_guidance_scale == 1.: e_t = self.model.apply_model(x, t, conditioning, xtype=xtype, ctype=ctype) else: x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) c_in = torch.cat([unconditional_conditioning, conditioning]) e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in, xtype=xtype, ctype=ctype).chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep if xtype == 'image': extended_shape = (b, 1, 1, 1) elif xtype == 'text': extended_shape = (b, 1) a_t = torch.full(extended_shape, alphas[index], device=device) a_prev = torch.full(extended_shape, alphas_prev[index], device=device) sigma_t = torch.full(extended_shape, sigmas[index], device=device) sqrt_one_minus_at = torch.full(extended_shape, sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0 class DDIMSampler_VD_DualContext(DDIMSampler_VD): @torch.no_grad() def sample_dc(self, steps, shape, xt=None, first_conditioning=None, second_conditioning=None, unconditional_guidance_scale=1., xtype='image', first_ctype='prompt', second_ctype='prompt', eta=0., temperature=1., mixed_ratio=0.5, noise_dropout=0., verbose=True, log_every_t=100,): self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose) print(f'Data shape for DDIM sampling is {shape}, eta {eta}') samples, intermediates = self.ddim_sampling_dc( shape, xt=xt, first_conditioning=first_conditioning, second_conditioning=second_conditioning, unconditional_guidance_scale=unconditional_guidance_scale, xtype=xtype, first_ctype=first_ctype, second_ctype=second_ctype, ddim_use_original_steps=False, noise_dropout=noise_dropout, temperature=temperature, log_every_t=log_every_t, mixed_ratio=mixed_ratio, ) return samples, intermediates @torch.no_grad() def ddim_sampling_dc(self, shape, xt=None, first_conditioning=None, second_conditioning=None, unconditional_guidance_scale=1., xtype='image', first_ctype='prompt', second_ctype='prompt', ddim_use_original_steps=False, timesteps=None, noise_dropout=0., temperature=1., mixed_ratio=0.5, log_every_t=100,): device = self.model.device bs = shape[0] if xt is None: xt = torch.randn(shape, device=device) if timesteps is None: timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps elif timesteps is not None and not ddim_use_original_steps: subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 timesteps = self.ddim_timesteps[:subset_end] intermediates = {'pred_xt': [], 'pred_x0': []} time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] # print(f"Running DDIM Sampling with {total_steps} timesteps") pred_xt = xt iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) for i, step in enumerate(iterator): index = total_steps - i - 1 ts = torch.full((bs,), step, device=device, dtype=torch.long) outs = self.p_sample_ddim_dc( pred_xt, first_conditioning, second_conditioning, ts, index, unconditional_guidance_scale=unconditional_guidance_scale, xtype=xtype, first_ctype=first_ctype, second_ctype=second_ctype, use_original_steps=ddim_use_original_steps, noise_dropout=noise_dropout, temperature=temperature, mixed_ratio=mixed_ratio,) pred_xt, pred_x0 = outs if index % log_every_t == 0 or index == total_steps - 1: intermediates['pred_xt'].append(pred_xt) intermediates['pred_x0'].append(pred_x0) return pred_xt, intermediates @torch.no_grad() def p_sample_ddim_dc(self, x, first_conditioning, second_conditioning, t, index, unconditional_guidance_scale=1., xtype='image', first_ctype='prompt', second_ctype='prompt', repeat_noise=False, use_original_steps=False, noise_dropout=0., temperature=1., mixed_ratio=0.5,): b, *_, device = *x.shape, x.device x_in = torch.cat([x] * 2) t_in = torch.cat([t] * 2) first_c = torch.cat(first_conditioning) second_c = torch.cat(second_conditioning) e_t_uncond, e_t = self.model.apply_model_dc( x_in, t_in, first_c, second_c, xtype=xtype, first_ctype=first_ctype, second_ctype=second_ctype, mixed_ratio=mixed_ratio).chunk(2) # e_t_uncond, e_t = self.model.apply_model(x_in, t_in, first_c, xtype='image', ctype='vision').chunk(2) e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas # select parameters corresponding to the currently considered timestep if xtype == 'image': extended_shape = (b, 1, 1, 1) elif xtype == 'text': extended_shape = (b, 1) a_t = torch.full(extended_shape, alphas[index], device=device) a_prev = torch.full(extended_shape, alphas_prev[index], device=device) sigma_t = torch.full(extended_shape, sigmas[index], device=device) sqrt_one_minus_at = torch.full(extended_shape, sqrt_one_minus_alphas[index],device=device) # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature if noise_dropout > 0.: noise = torch.nn.functional.dropout(noise, p=noise_dropout) x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise return x_prev, pred_x0