Spaces:
Runtime error
Runtime error
File size: 1,483 Bytes
d43521a c42314f d43521a a184a4d d43521a 5904f8c d43521a 3915661 d43521a ce0ccdb d43521a 4c3f294 d43521a d82c758 019744c 478e5c0 d43521a c2c67ea d43521a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import streamlit as st
st.title("Grammar Corrector")
st.write("Paste or type text, select number of correction options, enter and the machine will present attempts to correct your text's grammar.")
default_text = "In conclusion,if anyone has some problem the customers must be returned."
sent = st.text_area("Text", default_text, height=40)
num_correct_options = st.number_input('Number of Correction Options', min_value=1, max_value=3, value=1, step=1)
from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device)
def correct_grammar(input_text, num_return_sequences=num_correct_options):
batch = tokenizer([input_text], truncation=True, padding = 'max_length', max_length = 64, return_tensors = 'pt').to(torch_device)
results = model.generate(**batch, max_length = 64, num_beams = 5, num_return_sequences = num_correct_options, temperature = 1.5)
return results
results = correct_grammar(sent, num_correct_options)
generated_options = []
for generated_option_idx, generated_option in enumerate(results):
text = tokenizer.decode(generated_option, clean_up_tokenization_spaces = True, skip_special_tokens = True)
generated_options.append(text)
st.write(generated_options)
|