Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -39,11 +39,11 @@ elif model_checkpoint == "xlm-roberta-large":
|
|
39 |
|
40 |
st.subheader("Select Text Input Method")
|
41 |
input_method = st.radio("", ('Select from examples', 'Write or paste text'))
|
42 |
-
if input_method == 'Select from
|
43 |
selected_text = st.selectbox('Select example from list', example_list, index=0, key=1)
|
44 |
st.subheader("Text to Run")
|
45 |
input_text = st.text_area("Selected example", selected_text, height=128, max_chars=None, key=2)
|
46 |
-
elif input_method == "Write or
|
47 |
st.subheader("Text Input")
|
48 |
input_text = st.text_area('Write or paste text below', value="", height=128, max_chars=None, key=2)
|
49 |
|
@@ -59,7 +59,7 @@ def get_html(html: str):
|
|
59 |
html = html.replace("\n", " ")
|
60 |
return WRAPPER.format(html)
|
61 |
|
62 |
-
Run_Button = st.button("
|
63 |
if Run_Button == True:
|
64 |
|
65 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
@@ -72,7 +72,7 @@ if Run_Button == True:
|
|
72 |
cols_to_keep = ['word','entity','score','start','end']
|
73 |
df_final = df[cols_to_keep]
|
74 |
|
75 |
-
st.subheader("Recognized
|
76 |
st.dataframe(df_final)
|
77 |
|
78 |
st.subheader("Spacy Style Display")
|
|
|
39 |
|
40 |
st.subheader("Select Text Input Method")
|
41 |
input_method = st.radio("", ('Select from examples', 'Write or paste text'))
|
42 |
+
if input_method == 'Select from examples':
|
43 |
selected_text = st.selectbox('Select example from list', example_list, index=0, key=1)
|
44 |
st.subheader("Text to Run")
|
45 |
input_text = st.text_area("Selected example", selected_text, height=128, max_chars=None, key=2)
|
46 |
+
elif input_method == "Write or paste text":
|
47 |
st.subheader("Text Input")
|
48 |
input_text = st.text_area('Write or paste text below', value="", height=128, max_chars=None, key=2)
|
49 |
|
|
|
59 |
html = html.replace("\n", " ")
|
60 |
return WRAPPER.format(html)
|
61 |
|
62 |
+
Run_Button = st.button("Run", key=None)
|
63 |
if Run_Button == True:
|
64 |
|
65 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
|
|
72 |
cols_to_keep = ['word','entity','score','start','end']
|
73 |
df_final = df[cols_to_keep]
|
74 |
|
75 |
+
st.subheader("Recognized Nouns")
|
76 |
st.dataframe(df_final)
|
77 |
|
78 |
st.subheader("Spacy Style Display")
|