File size: 12,513 Bytes
222bcd3
 
 
 
 
 
 
 
 
 
 
 
 
43ac1f6
222bcd3
 
 
 
 
558bfa5
222bcd3
 
 
 
 
43ac1f6
 
 
 
 
 
 
 
 
 
 
222bcd3
 
43ac1f6
222bcd3
43ac1f6
 
 
 
 
 
 
 
222bcd3
 
 
 
43ac1f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222bcd3
 
 
43ac1f6
948b2ad
 
222bcd3
 
 
 
 
 
 
 
43ac1f6
 
 
 
 
 
 
 
222bcd3
 
43ac1f6
222bcd3
 
 
 
 
 
 
 
 
 
 
43ac1f6
 
 
 
 
 
 
222bcd3
 
 
 
 
 
 
 
e8010f6
 
 
 
 
 
 
 
 
 
 
 
222bcd3
 
 
 
 
 
e8010f6
222bcd3
43ac1f6
222bcd3
 
e8010f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ac1f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8010f6
222bcd3
 
 
 
 
 
43ac1f6
222bcd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43ac1f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222bcd3
 
43ac1f6
9bac0c7
43ac1f6
 
 
 
 
 
 
9bac0c7
43ac1f6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import gradio as gr
import os
import asyncio
import nest_asyncio
from datetime import datetime
from typing import Optional, Dict, Any

from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination
from autogen_agentchat.teams import SelectorGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.agents.web_surfer import MultimodalWebSurfer

# Enable nested event loops
nest_asyncio.apply()

class AIShoppingAnalyzer:
    def __init__(self, api_key: str):
        self.api_key = api_key
        os.environ["OPENAI_API_KEY"] = api_key
        self.model_client = OpenAIChatCompletionClient(model="gpt-4o")
        self.termination = MaxMessageTermination(max_messages=20) | TextMentionTermination("TERMINATE")
        
    def create_websurfer(self) -> MultimodalWebSurfer:
        """Initialize the web surfer agent for e-commerce research"""
        description = (
            "E-commerce research specialist that:\n"
            "1. Searches multiple retailers for product options\n"
            "2. Compares prices and reviews\n"
            "3. Checks product specifications and availability\n"
            "4. Analyzes website structure and findability\n"
            "5. Detects and analyzes structured data (Schema.org, JSON-LD, Microdata)\n"
            "6. Evaluates product markup and rich snippets\n"
            "7. Checks for proper semantic HTML and data organization"
        )
        
        return MultimodalWebSurfer(
            name="websurfer_agent",
            description=description,
            model_client=self.model_client,
            headless=True,
            browser_kwargs={
                "args": [
                    "--disable-dev-shm-usage",
                    "--no-sandbox",
                    "--disable-setuid-sandbox"
                ]
            }
        )

    def create_assistant(self) -> AssistantAgent:
        """Initialize the shopping assistant agent"""
        system_message = (
            "You are an expert shopping assistant and e-commerce analyst. "
            "Analyze websites and provide reports in this format:\n\n"
            "πŸ“Š E-COMMERCE ANALYSIS REPORT\n"
            "============================\n"
            "Site: {url}\n"
            "Date: {date}\n\n"
            "πŸ” FINDABILITY SCORE: [β˜…β˜…β˜…β˜…β˜†]\n"
            "-----------------------------\n"
            "β€’ Category Organization\n"
            "β€’ Navigation Structure\n"
            "β€’ Filter Systems\n\n"
            "πŸ“ INFORMATION QUALITY: [β˜…β˜…β˜…β˜…β˜†]\n"
            "------------------------------\n"
            "β€’ Product Details\n"
            "β€’ Image Quality\n"
            "β€’ Technical Specs\n"
            "β€’ Structured Data\n\n"
            "πŸ”„ NAVIGATION & SEARCH: [β˜…β˜…β˜…β˜…β˜†]\n"
            "------------------------------\n"
            "β€’ Search Features\n"
            "β€’ User Experience\n"
            "β€’ Mobile Design\n\n"
            "πŸ’° PRICING TRANSPARENCY: [β˜…β˜…β˜…β˜…β˜†]\n"
            "------------------------------\n"
            "β€’ Price Display\n"
            "β€’ Special Offers\n"
            "β€’ Comparison Tools\n\n"
            "πŸ“ˆ OVERALL ASSESSMENT\n"
            "-------------------\n"
            "[Summary]\n\n"
            "πŸ”§ TECHNICAL INSIGHTS\n"
            "-------------------\n"
            "[Technical Details]"
        )
        
        return AssistantAgent(
            name="assistant_agent",
            description="E-commerce shopping advisor and website analyzer",
            system_message=system_message,
            model_client=self.model_client
        )

    def create_team(self, websurfer_agent: MultimodalWebSurfer, assistant_agent: AssistantAgent) -> SelectorGroupChat:
        """Set up the team of agents"""
        user_proxy = UserProxyAgent(
            name="user_proxy",
            description="An e-commerce site owner looking for AI shopping analysis"
        )

        selector_prompt = (
            "You are coordinating an e-commerce analysis system. Select the next role from these participants:\n"
            "- The websurfer_agent searches products and analyzes website structure\n"
            "- The assistant_agent evaluates findings and makes recommendations\n"
            "- The user_proxy provides input when needed\n\n"
            "Return only the role name."
        )

        return SelectorGroupChat(
            participants=[websurfer_agent, assistant_agent, user_proxy],
            selector_prompt=selector_prompt,
            model_client=self.model_client,
            termination_condition=self.termination
        )

    async def analyze_site(self, 
                         website_url: str, 
                         product_category: str, 
                         specific_product: Optional[str] = None) -> str:
        """Run the analysis with proper cleanup"""
        websurfer = None
        try:
            query = (
                f"Analyze the e-commerce experience for {website_url} focusing on:\n"
                f"1. Product findability in the {product_category} category\n"
                "2. Product information quality\n"
                "3. Navigation and search functionality\n"
                "4. Price visibility and comparison features"
            )
            
            if specific_product:
                query += f"\n5. Detailed analysis of this specific product: {specific_product}"

            websurfer = self.create_websurfer()
            assistant = self.create_assistant()
            team = self.create_team(websurfer, assistant)
            
            try:
                result = []
                async for message in team.run_stream(task=query):
                    if isinstance(message, str):
                        result.append(message)
                    else:
                        result.append(str(message))
                return "\n".join(result)
            except EOFError:
                return "Analysis completed with some limitations. Please try again if results are incomplete."
            except Exception as e:
                return f"Analysis error: {str(e)}"

        finally:
            if websurfer:
                try:
                    await websurfer.close()
                except Exception as e:
                    print(f"Cleanup error: {str(e)}")

def create_gradio_interface() -> gr.Blocks:
    """Create the Gradio interface for the AI Shopping Analyzer"""
    
    css = """
    @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');
    
    body { 
        font-family: 'Open Sans', sans-serif !important; 
    }
    
    .dashboard-container { 
        border: 1px solid #e0e5ff; 
        border-radius: 8px; 
        background-color: #ffffff;
    }
    
    .token-header { 
        font-size: 1.25rem; 
        font-weight: 600; 
        margin-top: 1rem; 
        margin-bottom: 0.5rem;
    }
    
    .feature-button { 
        display: inline-block; 
        margin: 0.25rem; 
        padding: 0.5rem 1rem; 
        background-color: #f3f4f6; 
        border: 1px solid #e5e7eb; 
        border-radius: 0.375rem; 
        font-size: 0.875rem;
    }
    
    .feature-button:hover { 
        background-color: #e5e7eb;
    }
    
    .gr-form {
        background: transparent !important;
        border: none !important;
        box-shadow: none !important;
    }
    
    .gr-input, .gr-textarea {
        border: 1px solid #e5e7eb !important;
        border-radius: 6px !important;
        padding: 8px 12px !important;
        font-size: 14px !important;
        transition: all 0.2s !important;
    }
    
    .gr-input:focus, .gr-textarea:focus {
        border-color: #4c4ce3 !important;
        outline: none !important;
        box-shadow: 0 0 0 2px rgba(76, 76, 227, 0.2) !important;
    }
    
    .gr-button {
        background-color: #4c4ce3 !important;
        color: white !important;
        border-radius: 6px !important;
        padding: 8px 16px !important;
        font-size: 14px !important;
        font-weight: 600 !important;
        transition: all 0.2s !important;
    }
    
    .gr-button:hover {
        background-color: #3a3ab8 !important;
    }

    .analysis-output {
        background: white;
        padding: 20px;
        border-radius: 8px;
        border: 1px solid #e0e5ff;
        margin-top: 20px;
    }

    .analysis-output h1 {
        font-size: 1.5em;
        font-weight: bold;
        margin-bottom: 1em;
    }

    .analysis-output h2 {
        font-size: 1.25em;
        font-weight: 600;
        margin-top: 1.5em;
        margin-bottom: 0.5em;
    }

    .analysis-output h3 {
        font-size: 1.1em;
        font-weight: 600;
        margin-top: 1em;
        margin-bottom: 0.5em;
    }

    .analysis-output ul {
        margin-left: 1.5em;
        margin-bottom: 1em;
    }

    .analysis-output li {
        margin-bottom: 0.5em;
    }

    .analysis-output p {
        margin-bottom: 1em;
        line-height: 1.6;
    }

    .analysis-output code {
        background: #f3f4f6;
        padding: 0.2em 0.4em;
        border-radius: 4px;
        font-size: 0.9em;
    }
    """

    async def run_analysis(api_key: str,
                         website_url: str,
                         product_category: str,
                         specific_product: str) -> str:
        """Handle the analysis submission"""
        if not api_key.startswith("sk-"):
            return "Please enter a valid OpenAI API key (should start with 'sk-')"
        
        if not website_url:
            return "Please enter a website URL"
            
        if not product_category:
            return "Please specify a product category"
            
        try:
            analyzer = AIShoppingAnalyzer(api_key)
            result = await analyzer.analyze_site(
                website_url=website_url,
                product_category=product_category,
                specific_product=specific_product if specific_product else None
            )
            return result
        except Exception as e:
            return f"Error during analysis: {str(e)}"

    with gr.Blocks(css=css) as demo:
        gr.HTML("""
            <div class="dashboard-container p-6">
                <h1 class="text-2xl font-bold mb-2">AI Shopping Agent Analyzer</h1>
                <p class="text-gray-600 mb-6">Analyze how your e-commerce site performs with AI shoppers</p>
            </div>
        """)
        
        with gr.Group():
            api_key = gr.Textbox(
                label="OpenAI API Key",
                placeholder="sk-...",
                type="password",
                container=True
            )
            
            website_url = gr.Textbox(
                label="Website URL",
                placeholder="https://your-store.com",
                container=True
            )
            
            product_category = gr.Textbox(
                label="Product Category",
                placeholder="e.g., Electronics, Clothing, etc.",
                container=True
            )
            
            specific_product = gr.Textbox(
                label="Specific Product (Optional)",
                placeholder="e.g., Blue Widget Model X",
                container=True
            )
            
            analyze_button = gr.Button(
                "Analyze Site",
                variant="primary"
            )
            
            analysis_output = gr.Markdown(
                label="Analysis Results",
                value="Results will appear here...",
                elem_classes="analysis-output"
            )
            
            analyze_button.click(
                fn=run_analysis,
                inputs=[api_key, website_url, product_category, specific_product],
                outputs=analysis_output
            )
    
    return demo

if __name__ == "__main__":
    print("Setting up Playwright...")
    try:
        import subprocess
        subprocess.run(
            ["playwright", "install", "chromium"],
            check=True,
            capture_output=True,
            text=True
        )
    except Exception as e:
        print(f"Warning: Playwright setup encountered an issue: {str(e)}")
    
    print("Starting Gradio interface...")
    demo = create_gradio_interface()
    demo.launch()