Spaces:
Running
Running
File size: 12,546 Bytes
5e3183d ab2a9d9 1de7c37 ab2a9d9 4f7928b 1c5e607 1de7c37 5e3183d ab2a9d9 5e3183d dd2349f ab2a9d9 1c5e607 ab2a9d9 1de7c37 ab2a9d9 1de7c37 5e3183d 1de7c37 ab2a9d9 1c5e607 4f7928b dd2349f 1c5e607 dd2349f 1a04a7a 1de7c37 1a04a7a 1de7c37 e81ffaf 1c5e607 1a04a7a 1de7c37 1a04a7a 1de7c37 8dd9e80 1a04a7a 1c5e607 f21d84e dd2349f f21d84e 1a04a7a dd2349f f21d84e dd2349f f21d84e dd2349f f21d84e 1a04a7a dd2349f 1de7c37 dd2349f 8dd9e80 1de7c37 1c5e607 dd2349f 1c5e607 dd2349f 1c5e607 8dd9e80 dd2349f 8dd9e80 1c5e607 dd2349f f21d84e 8dd9e80 1a04a7a 8dd9e80 1a04a7a dd2349f 1a04a7a 1de7c37 1a04a7a dd2349f 1a04a7a 1c5e607 1a04a7a 1de7c37 1c5e607 1a04a7a 1de7c37 1a04a7a dd2349f 1de7c37 1a04a7a dd2349f 1a04a7a 1de7c37 1a04a7a dd2349f 1c5e607 1a04a7a dd2349f e81ffaf dd2349f e81ffaf dd2349f e81ffaf dd2349f e81ffaf dd2349f e81ffaf dd2349f e81ffaf dd2349f e81ffaf dd2349f 1a04a7a 1c5e607 dd2349f 1a04a7a dd2349f 1c5e607 dd2349f 1a04a7a dd2349f 1a04a7a dd2349f 1a04a7a dd2349f 1a04a7a dd2349f 1c5e607 dd2349f 1a04a7a dd2349f 4124a56 dd2349f 4124a56 dd2349f 4124a56 5e3183d dd2349f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
import requests
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin, urlparse
import asyncio
import aiohttp
from collections import defaultdict
import unicodedata
import logging
import ssl
import brotli # Add this import
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class WebsiteCrawler:
def __init__(self, max_depth=3, max_pages=50):
self.max_depth = max_depth
self.max_pages = max_pages
self.visited_urls = set()
self.url_metadata = defaultdict(dict)
self.homepage_metadata = None
self.headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate, br",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
}
self.session = None
async def get_session(self):
if self.session is None:
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
# Configure client with brotli support
connector = aiohttp.TCPConnector(ssl=ssl_context)
self.session = aiohttp.ClientSession(
connector=connector, timeout=aiohttp.ClientTimeout(total=30)
)
return self.session
async def decode_response(self, response):
"""Handle various content encodings including brotli"""
content_encoding = response.headers.get("Content-Encoding", "").lower()
content = await response.read()
if content_encoding == "br":
try:
decoded = brotli.decompress(content)
return decoded.decode("utf-8", errors="ignore")
except Exception as e:
logger.error(f"Error decoding brotli content: {str(e)}")
return content.decode("utf-8", errors="ignore")
elif content_encoding == "gzip":
import gzip
try:
decoded = gzip.decompress(content)
return decoded.decode("utf-8", errors="ignore")
except Exception as e:
logger.error(f"Error decoding gzip content: {str(e)}")
return content.decode("utf-8", errors="ignore")
else:
return content.decode("utf-8", errors="ignore")
def clean_text(self, text, is_title=False):
"""Clean and normalize text"""
if not text:
return ""
# Normalize unicode characters
text = unicodedata.normalize("NFKD", text)
text = re.sub(r"[^\x00-\x7F]+", "", text)
if is_title:
# Remove common suffixes and fragments for titles
text = re.sub(r"\s*[\|\-#:•].*", "", text)
text = re.sub(r"^\s*Welcome to\s+", "", text)
text = text.replace("docusaurus_skipToContent_fallback", "")
return " ".join(text.split()).strip()
async def process_homepage(self, url):
"""Specifically process the homepage to extract key metadata"""
try:
session = await self.get_session()
async with session.get(
url, headers=self.headers, allow_redirects=True
) as response:
if response.status != 200:
raise Exception(
f"Failed to fetch homepage: status {response.status}"
)
text = await self.decode_response(response)
soup = BeautifulSoup(text, "html.parser")
# Extract site name
site_name = None
site_meta = soup.find("meta", property="og:site_name")
if site_meta and site_meta.get("content"):
site_name = site_meta["content"]
if not site_name:
title_tag = soup.find("title")
if title_tag:
site_name = title_tag.text.split("|")[0].strip()
if not site_name:
site_name = urlparse(url).netloc.split(".")[0].capitalize()
# Get homepage description
description = None
meta_desc = soup.find("meta", {"name": "description"})
if meta_desc and meta_desc.get("content"):
description = meta_desc["content"]
if not description:
og_desc = soup.find("meta", property="og:description")
if og_desc and og_desc.get("content"):
description = og_desc["content"]
if not description:
first_p = soup.find("p")
if first_p:
description = first_p.text
self.homepage_metadata = {
"site_name": self.clean_text(site_name, is_title=True),
"description": (
self.clean_text(description) if description else None
),
}
except Exception as e:
logger.error(f"Error processing homepage {url}: {str(e)}")
self.homepage_metadata = {
"site_name": urlparse(url).netloc.split(".")[0].capitalize(),
"description": None,
}
async def crawl_website(self, start_url):
"""Crawl website starting from the given URL"""
try:
# First process the homepage
logger.info(f"Processing homepage: {start_url}")
await self.process_homepage(start_url)
base_domain = urlparse(start_url).netloc
queue = [(start_url, 0)]
seen = {start_url}
while queue and len(self.visited_urls) < self.max_pages:
current_url, depth = queue.pop(0)
if depth > self.max_depth:
continue
logger.info(f"Crawling page: {current_url} (depth: {depth})")
links = await self.crawl_page(current_url, depth, base_domain)
logger.info(f"Found {len(links)} links on {current_url}")
for link in links:
if link not in seen and urlparse(link).netloc == base_domain:
seen.add(link)
queue.append((link, depth + 1))
logger.info(f"Crawl completed. Visited {len(self.visited_urls)} pages")
except Exception as e:
logger.error(f"Error during crawl: {str(e)}")
raise
finally:
await self.cleanup()
def generate_llms_txt(self):
"""Generate llms.txt content"""
if not self.url_metadata:
return "No content was found to generate llms.txt"
# Sort URLs by importance and remove duplicates
sorted_urls = []
seen_titles = set()
for url, metadata in sorted(
self.url_metadata.items(),
key=lambda x: (x[1]["importance"], x[0]),
reverse=True,
):
if metadata["title"] not in seen_titles:
sorted_urls.append((url, metadata))
seen_titles.add(metadata["title"])
if not sorted_urls:
return "No valid content was found"
# Generate content
content = []
# Use homepage metadata for main title and description
main_title = self.homepage_metadata.get("site_name", "Welcome")
homepage_description = self.homepage_metadata.get("description")
content.append(f"# {main_title}")
if homepage_description:
content.append(f"\n> {homepage_description}")
else:
# Fallback to first good description from content
for _, metadata in sorted_urls:
desc = self.clean_description(metadata["description"])
if desc and len(desc) > 20 and "null" not in desc.lower():
content.append(f"\n> {desc}")
break
# Group by category
categories = defaultdict(list)
for url, metadata in sorted_urls:
if metadata["title"] and url:
categories[metadata["category"]].append((url, metadata))
# Add sections
for category in ["Docs", "API", "Guides", "Examples", "Blog", "Optional"]:
if category in categories:
content.append(f"\n## {category}")
# Add links without extra newlines
links = []
for url, metadata in categories[category]:
title = metadata["title"].strip()
desc = self.clean_description(metadata["description"])
if desc:
links.append(f"- [{title}]({url}): {desc}")
else:
links.append(f"- [{title}]({url})")
content.append("\n".join(links))
return "\n".join(content)
# Process URL function (outside the class)
async def process_url(url, max_depth, max_pages):
"""Process URL and generate llms.txt"""
try:
# Add https:// if not present
if not url.startswith(("http://", "https://")):
url = "https://" + url
# Validate URL
result = urlparse(url)
if not all([result.scheme, result.netloc]):
return "", "Invalid URL format. Please enter a valid URL."
logger.info(f"Starting crawl of {url}")
# Process website
crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages))
await crawler.crawl_website(url)
logger.info("Generating llms.txt content")
content = crawler.generate_llms_txt()
if not content or content.strip() == "":
return "", "No content was generated. Check the logs for details."
return content, f"Successfully crawled {len(crawler.visited_urls)} pages."
except Exception as e:
logger.error(f"Error processing URL {url}: {str(e)}")
return "", f"Error: {str(e)}"
# Create Gradio interface
theme = gr.themes.Soft(primary_hue="blue", font="Open Sans")
with gr.Blocks(
theme=theme,
css="""
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap');
.gradio-container {
font-family: 'Open Sans', sans-serif !important;
}
.gr-button {
font-family: 'Open Sans', sans-serif !important;
font-weight: 600 !important;
}
.primary-btn {
background-color: #2436d4 !important;
color: white !important;
}
.primary-btn:hover {
background-color: #1c2aa8 !important;
}
[data-testid="textbox"] {
font-family: 'Open Sans', sans-serif !important;
}
.gr-padded {
font-family: 'Open Sans', sans-serif !important;
}
.gr-input {
font-family: 'Open Sans', sans-serif !important;
}
.gr-label {
font-family: 'Open Sans', sans-serif !important;
}
""",
) as iface:
gr.Markdown("# llms.txt Generator")
gr.Markdown("Generate an llms.txt file from a website following the specification.")
with gr.Row():
url_input = gr.Textbox(
label="Website URL",
placeholder="Enter the website URL (e.g., example.com)",
info="The URL will be automatically prefixed with https:// if not provided",
)
with gr.Row():
with gr.Column():
depth_input = gr.Slider(
minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth"
)
with gr.Column():
pages_input = gr.Slider(
minimum=10, maximum=100, value=50, step=10, label="Maximum Pages"
)
generate_btn = gr.Button("Generate llms.txt", variant="primary")
output = gr.Textbox(
label="Generated llms.txt Content",
lines=20,
show_copy_button=True,
container=True,
)
status = gr.Textbox(label="Status")
generate_btn.click(
fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)),
inputs=[url_input, depth_input, pages_input],
outputs=[output, status],
)
if __name__ == "__main__":
iface.launch()
|