File size: 12,546 Bytes
5e3183d
 
 
 
 
ab2a9d9
1de7c37
ab2a9d9
4f7928b
1c5e607
1de7c37
 
5e3183d
ab2a9d9
 
5e3183d
dd2349f
ab2a9d9
1c5e607
ab2a9d9
 
 
 
1de7c37
ab2a9d9
1de7c37
 
 
 
 
 
 
5e3183d
1de7c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2a9d9
1c5e607
 
4f7928b
 
 
dd2349f
 
 
1c5e607
 
dd2349f
 
 
 
 
1a04a7a
1de7c37
 
1a04a7a
1de7c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81ffaf
1c5e607
1a04a7a
1de7c37
 
 
 
 
1a04a7a
 
 
1de7c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd9e80
1a04a7a
1c5e607
 
 
 
f21d84e
 
 
dd2349f
f21d84e
1a04a7a
dd2349f
 
f21d84e
dd2349f
f21d84e
dd2349f
f21d84e
 
 
1a04a7a
 
 
dd2349f
1de7c37
 
 
dd2349f
8dd9e80
1de7c37
 
 
 
 
 
 
 
 
1c5e607
 
 
 
dd2349f
 
1c5e607
 
dd2349f
1c5e607
8dd9e80
dd2349f
8dd9e80
 
1c5e607
dd2349f
 
f21d84e
8dd9e80
1a04a7a
8dd9e80
1a04a7a
dd2349f
 
 
 
1a04a7a
1de7c37
1a04a7a
 
 
 
dd2349f
 
1a04a7a
1c5e607
 
 
1a04a7a
 
1de7c37
 
1c5e607
1a04a7a
 
1de7c37
 
1a04a7a
dd2349f
1de7c37
 
 
1a04a7a
dd2349f
1a04a7a
1de7c37
1a04a7a
 
dd2349f
1c5e607
 
1a04a7a
dd2349f
 
 
e81ffaf
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
 
 
 
 
 
 
 
 
 
 
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
dd2349f
 
1a04a7a
1c5e607
dd2349f
1a04a7a
 
dd2349f
1c5e607
dd2349f
1a04a7a
dd2349f
1a04a7a
 
dd2349f
 
 
1a04a7a
dd2349f
 
 
 
1a04a7a
dd2349f
1c5e607
 
 
 
dd2349f
1a04a7a
dd2349f
4124a56
dd2349f
4124a56
 
 
dd2349f
4124a56
5e3183d
 
dd2349f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import requests
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin, urlparse
import asyncio
import aiohttp
from collections import defaultdict
import unicodedata
import logging
import ssl
import brotli  # Add this import

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class WebsiteCrawler:
    def __init__(self, max_depth=3, max_pages=50):
        self.max_depth = max_depth
        self.max_pages = max_pages
        self.visited_urls = set()
        self.url_metadata = defaultdict(dict)
        self.homepage_metadata = None
        self.headers = {
            "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36",
            "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
            "Accept-Language": "en-US,en;q=0.5",
            "Accept-Encoding": "gzip, deflate, br",
            "DNT": "1",
            "Connection": "keep-alive",
            "Upgrade-Insecure-Requests": "1",
        }
        self.session = None

    async def get_session(self):
        if self.session is None:
            ssl_context = ssl.create_default_context()
            ssl_context.check_hostname = False
            ssl_context.verify_mode = ssl.CERT_NONE

            # Configure client with brotli support
            connector = aiohttp.TCPConnector(ssl=ssl_context)
            self.session = aiohttp.ClientSession(
                connector=connector, timeout=aiohttp.ClientTimeout(total=30)
            )
        return self.session

    async def decode_response(self, response):
        """Handle various content encodings including brotli"""
        content_encoding = response.headers.get("Content-Encoding", "").lower()
        content = await response.read()

        if content_encoding == "br":
            try:
                decoded = brotli.decompress(content)
                return decoded.decode("utf-8", errors="ignore")
            except Exception as e:
                logger.error(f"Error decoding brotli content: {str(e)}")
                return content.decode("utf-8", errors="ignore")
        elif content_encoding == "gzip":
            import gzip

            try:
                decoded = gzip.decompress(content)
                return decoded.decode("utf-8", errors="ignore")
            except Exception as e:
                logger.error(f"Error decoding gzip content: {str(e)}")
                return content.decode("utf-8", errors="ignore")
        else:
            return content.decode("utf-8", errors="ignore")

    def clean_text(self, text, is_title=False):
        """Clean and normalize text"""
        if not text:
            return ""
        # Normalize unicode characters
        text = unicodedata.normalize("NFKD", text)
        text = re.sub(r"[^\x00-\x7F]+", "", text)

        if is_title:
            # Remove common suffixes and fragments for titles
            text = re.sub(r"\s*[\|\-#:•].*", "", text)
            text = re.sub(r"^\s*Welcome to\s+", "", text)
            text = text.replace("docusaurus_skipToContent_fallback", "")

        return " ".join(text.split()).strip()

    async def process_homepage(self, url):
        """Specifically process the homepage to extract key metadata"""
        try:
            session = await self.get_session()
            async with session.get(
                url, headers=self.headers, allow_redirects=True
            ) as response:
                if response.status != 200:
                    raise Exception(
                        f"Failed to fetch homepage: status {response.status}"
                    )

                text = await self.decode_response(response)
                soup = BeautifulSoup(text, "html.parser")

                # Extract site name
                site_name = None
                site_meta = soup.find("meta", property="og:site_name")
                if site_meta and site_meta.get("content"):
                    site_name = site_meta["content"]

                if not site_name:
                    title_tag = soup.find("title")
                    if title_tag:
                        site_name = title_tag.text.split("|")[0].strip()

                if not site_name:
                    site_name = urlparse(url).netloc.split(".")[0].capitalize()

                # Get homepage description
                description = None
                meta_desc = soup.find("meta", {"name": "description"})
                if meta_desc and meta_desc.get("content"):
                    description = meta_desc["content"]

                if not description:
                    og_desc = soup.find("meta", property="og:description")
                    if og_desc and og_desc.get("content"):
                        description = og_desc["content"]

                if not description:
                    first_p = soup.find("p")
                    if first_p:
                        description = first_p.text

                self.homepage_metadata = {
                    "site_name": self.clean_text(site_name, is_title=True),
                    "description": (
                        self.clean_text(description) if description else None
                    ),
                }

        except Exception as e:
            logger.error(f"Error processing homepage {url}: {str(e)}")
            self.homepage_metadata = {
                "site_name": urlparse(url).netloc.split(".")[0].capitalize(),
                "description": None,
            }

    async def crawl_website(self, start_url):
        """Crawl website starting from the given URL"""
        try:
            # First process the homepage
            logger.info(f"Processing homepage: {start_url}")
            await self.process_homepage(start_url)

            base_domain = urlparse(start_url).netloc
            queue = [(start_url, 0)]
            seen = {start_url}

            while queue and len(self.visited_urls) < self.max_pages:
                current_url, depth = queue.pop(0)
                if depth > self.max_depth:
                    continue

                logger.info(f"Crawling page: {current_url} (depth: {depth})")
                links = await self.crawl_page(current_url, depth, base_domain)
                logger.info(f"Found {len(links)} links on {current_url}")

                for link in links:
                    if link not in seen and urlparse(link).netloc == base_domain:
                        seen.add(link)
                        queue.append((link, depth + 1))

            logger.info(f"Crawl completed. Visited {len(self.visited_urls)} pages")

        except Exception as e:
            logger.error(f"Error during crawl: {str(e)}")
            raise
        finally:
            await self.cleanup()

    def generate_llms_txt(self):
        """Generate llms.txt content"""
        if not self.url_metadata:
            return "No content was found to generate llms.txt"

        # Sort URLs by importance and remove duplicates
        sorted_urls = []
        seen_titles = set()

        for url, metadata in sorted(
            self.url_metadata.items(),
            key=lambda x: (x[1]["importance"], x[0]),
            reverse=True,
        ):
            if metadata["title"] not in seen_titles:
                sorted_urls.append((url, metadata))
                seen_titles.add(metadata["title"])

        if not sorted_urls:
            return "No valid content was found"

        # Generate content
        content = []

        # Use homepage metadata for main title and description
        main_title = self.homepage_metadata.get("site_name", "Welcome")
        homepage_description = self.homepage_metadata.get("description")

        content.append(f"# {main_title}")
        if homepage_description:
            content.append(f"\n> {homepage_description}")
        else:
            # Fallback to first good description from content
            for _, metadata in sorted_urls:
                desc = self.clean_description(metadata["description"])
                if desc and len(desc) > 20 and "null" not in desc.lower():
                    content.append(f"\n> {desc}")
                    break

        # Group by category
        categories = defaultdict(list)
        for url, metadata in sorted_urls:
            if metadata["title"] and url:
                categories[metadata["category"]].append((url, metadata))

        # Add sections
        for category in ["Docs", "API", "Guides", "Examples", "Blog", "Optional"]:
            if category in categories:
                content.append(f"\n## {category}")

                # Add links without extra newlines
                links = []
                for url, metadata in categories[category]:
                    title = metadata["title"].strip()
                    desc = self.clean_description(metadata["description"])
                    if desc:
                        links.append(f"- [{title}]({url}): {desc}")
                    else:
                        links.append(f"- [{title}]({url})")

                content.append("\n".join(links))

        return "\n".join(content)


# Process URL function (outside the class)
async def process_url(url, max_depth, max_pages):
    """Process URL and generate llms.txt"""
    try:
        # Add https:// if not present
        if not url.startswith(("http://", "https://")):
            url = "https://" + url

        # Validate URL
        result = urlparse(url)
        if not all([result.scheme, result.netloc]):
            return "", "Invalid URL format. Please enter a valid URL."

        logger.info(f"Starting crawl of {url}")

        # Process website
        crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages))
        await crawler.crawl_website(url)

        logger.info("Generating llms.txt content")
        content = crawler.generate_llms_txt()

        if not content or content.strip() == "":
            return "", "No content was generated. Check the logs for details."

        return content, f"Successfully crawled {len(crawler.visited_urls)} pages."

    except Exception as e:
        logger.error(f"Error processing URL {url}: {str(e)}")
        return "", f"Error: {str(e)}"


# Create Gradio interface
theme = gr.themes.Soft(primary_hue="blue", font="Open Sans")

with gr.Blocks(
    theme=theme,
    css="""
    @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap');

    .gradio-container {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-button {
        font-family: 'Open Sans', sans-serif !important;
        font-weight: 600 !important;
    }

    .primary-btn {
        background-color: #2436d4 !important;
        color: white !important;
    }

    .primary-btn:hover {
        background-color: #1c2aa8 !important;
    }

    [data-testid="textbox"] {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-padded {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-input {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-label {
        font-family: 'Open Sans', sans-serif !important;
    }
""",
) as iface:
    gr.Markdown("# llms.txt Generator")
    gr.Markdown("Generate an llms.txt file from a website following the specification.")

    with gr.Row():
        url_input = gr.Textbox(
            label="Website URL",
            placeholder="Enter the website URL (e.g., example.com)",
            info="The URL will be automatically prefixed with https:// if not provided",
        )

    with gr.Row():
        with gr.Column():
            depth_input = gr.Slider(
                minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth"
            )
        with gr.Column():
            pages_input = gr.Slider(
                minimum=10, maximum=100, value=50, step=10, label="Maximum Pages"
            )

    generate_btn = gr.Button("Generate llms.txt", variant="primary")

    output = gr.Textbox(
        label="Generated llms.txt Content",
        lines=20,
        show_copy_button=True,
        container=True,
    )

    status = gr.Textbox(label="Status")

    generate_btn.click(
        fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)),
        inputs=[url_input, depth_input, pages_input],
        outputs=[output, status],
    )

if __name__ == "__main__":
    iface.launch()