File size: 9,834 Bytes
5e3183d
 
 
 
 
ab2a9d9
 
4f7928b
1c5e607
5e3183d
ab2a9d9
 
5e3183d
ab2a9d9
1c5e607
ab2a9d9
 
 
 
 
1c5e607
5e3183d
ab2a9d9
1c5e607
 
4f7928b
 
 
 
1c5e607
1a04a7a
1c5e607
 
 
 
 
1a04a7a
1c5e607
1a04a7a
 
 
 
 
 
 
1c5e607
1a04a7a
 
 
 
 
e81ffaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5e607
e81ffaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5e607
 
 
 
 
 
 
 
 
 
 
 
e81ffaf
 
 
 
 
 
 
 
 
1c5e607
 
 
e81ffaf
 
 
 
 
 
 
1c5e607
 
e81ffaf
 
 
 
 
 
 
 
1a04a7a
 
 
 
 
 
 
1c5e607
1a04a7a
 
 
 
 
 
 
 
 
 
1c5e607
1a04a7a
 
 
 
1c5e607
 
 
 
 
1a04a7a
 
 
 
 
 
 
 
 
 
 
 
1c5e607
 
 
 
1a04a7a
1c5e607
 
 
 
 
 
 
 
 
1a04a7a
1c5e607
1a04a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5e607
 
 
1a04a7a
 
1c5e607
1a04a7a
 
 
 
 
 
 
 
 
1c5e607
 
1a04a7a
1c5e607
e81ffaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a04a7a
 
1c5e607
1a04a7a
 
 
 
1c5e607
 
1a04a7a
 
 
 
1c5e607
1a04a7a
1c5e607
1a04a7a
 
 
1c5e607
 
 
 
 
1a04a7a
4124a56
 
 
 
 
 
 
 
5e3183d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import gradio as gr
import requests
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin, urlparse
import asyncio
from collections import defaultdict
import unicodedata
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class WebsiteCrawler:
    def __init__(self, max_depth=3, max_pages=50):
        self.max_depth = max_depth
        self.max_pages = max_pages
        self.visited_urls = set()
        self.url_metadata = defaultdict(dict)
        self.headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
        }

    def clean_text(self, text, is_title=False):
        """Clean and normalize text"""
        if not text:
            return ""
        # Normalize unicode characters
        text = unicodedata.normalize('NFKD', text)
        text = re.sub(r'[^\x00-\x7F]+', '', text)
        
        if is_title:
            # Remove common suffixes and fragments for titles
            text = re.sub(r'\s*[\|\-#:•].*', '', text)
            text = re.sub(r'^\s*Welcome to\s+', '', text)
            text = text.replace('docusaurus_skipToContent_fallback', '')
        
        return ' '.join(text.split()).strip()

    async def crawl_page(self, url, depth, base_domain):
        """Crawl a single page and extract information"""
        if depth > self.max_depth or url in self.visited_urls or len(self.visited_urls) >= self.max_pages:
            return []

        try:
            response = requests.get(url, headers=self.headers, timeout=10)
            response.encoding = 'utf-8'
            self.visited_urls.add(url)

            soup = BeautifulSoup(response.text, 'html.parser')
            
            # Extract title with fallbacks
            title = None
            meta_title = soup.find('meta', property='og:title')
            if meta_title and meta_title.get('content'):
                title = meta_title['content']
            if not title:
                title_tag = soup.find('title')
                if title_tag:
                    title = title_tag.text
            if not title:
                h1_tag = soup.find('h1')
                if h1_tag:
                    title = h1_tag.text
            if not title:
                title = url.split('/')[-1]

            title = self.clean_text(title, is_title=True)
            
            # Extract description with fallbacks
            desc = None
            meta_desc = soup.find('meta', {'name': 'description'})
            if meta_desc and meta_desc.get('content'):
                desc = meta_desc['content']
            if not desc:
                og_desc = soup.find('meta', property='og:description')
                if og_desc and og_desc.get('content'):
                    desc = og_desc['content']
            if not desc:
                first_p = soup.find('p')
                if first_p:
                    desc = first_p.text
            
            desc = self.clean_text(desc) if desc else ""

            # Determine category and importance
            url_lower = url.lower()
            category = 'Optional'
            importance = 0
            
            if 'docs' in url_lower or 'documentation' in url_lower:
                category = 'Docs'
                importance = 5
            elif 'api' in url_lower:
                category = 'API'
                importance = 4
            elif 'guide' in url_lower or 'tutorial' in url_lower:
                category = 'Guides'
                importance = 3
            elif 'example' in url_lower:
                category = 'Examples'
                importance = 2
            elif 'blog' in url_lower:
                category = 'Blog'
                importance = 1
            
            # Store metadata
            clean_url = re.sub(r'#.*', '', url).rstrip('/')
            if title and len(title.strip()) > 0:  # Only store if we have a valid title
                self.url_metadata[clean_url] = {
                    'title': title,
                    'description': desc,
                    'category': category,
                    'importance': importance
                }

            # Find links
            links = []
            for a in soup.find_all('a', href=True):
                href = a['href']
                if not any(x in href.lower() for x in ['javascript:', 'mailto:', '.pdf', '.jpg', '.png', '.gif']):
                    next_url = urljoin(url, href)
                    if urlparse(next_url).netloc == base_domain:
                        links.append(next_url)
            return links

        except Exception as e:
            logger.error(f"Error crawling {url}: {str(e)}")
            return []

    async def crawl_website(self, start_url):
        """Crawl website starting from the given URL"""
        base_domain = urlparse(start_url).netloc
        queue = [(start_url, 0)]
        seen = {start_url}

        while queue and len(self.visited_urls) < self.max_pages:
            current_url, depth = queue.pop(0)
            if depth > self.max_depth:
                continue

            links = await self.crawl_page(current_url, depth, base_domain)
            for link in links:
                if link not in seen and urlparse(link).netloc == base_domain:
                    seen.add(link)
                    queue.append((link, depth + 1))

    def generate_llms_txt(self):
        """Generate llms.txt content"""
        if not self.url_metadata:
            return "No content was found to generate llms.txt"

        # Sort and filter URLs
        sorted_urls = sorted(
            self.url_metadata.items(),
            key=lambda x: (x[1]['importance'], x[0]),
            reverse=True
        )

        # Generate content
        content = []
        main_metadata = sorted_urls[0][1]
        content.append(f"# {main_metadata['title']}")
        if main_metadata['description']:
            content.append(f"\n> {main_metadata['description']}")

        # Group by category
        categories = defaultdict(list)
        seen_titles = set()
        
        for url, metadata in sorted_urls:
            title = metadata['title']
            if title not in seen_titles:
                categories[metadata['category']].append((url, metadata))
                seen_titles.add(title)

        # Add sections
        for category in ['Docs', 'API', 'Guides', 'Examples', 'Blog', 'Optional']:
            if category in categories:
                content.append(f"\n## {category}")
                for url, metadata in categories[category]:
                    if metadata['description']:
                        content.append(f"\n- [{metadata['title']}]({url}): {metadata['description']}")
                    else:
                        content.append(f"\n- [{metadata['title']}]({url})")

        return "\n".join(content)

async def process_url(url, max_depth, max_pages):
    """Process URL and generate llms.txt"""
    try:
        # Add https:// if not present
        if not url.startswith(('http://', 'https://')):
            url = 'https://' + url

        # Validate URL
        result = urlparse(url)
        if not all([result.scheme, result.netloc]):
            return "", "Invalid URL format. Please enter a valid URL."

        # Process website
        crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages))
        await crawler.crawl_website(url)
        content = crawler.generate_llms_txt()
        
        return content, f"Successfully crawled {len(crawler.visited_urls)} pages."
    
    except Exception as e:
        return "", f"Error: {str(e)}"

# Create Gradio interface
theme = gr.themes.Soft(primary_hue="blue", font="Open Sans")

with gr.Blocks(theme=theme, css="""
    @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap');
    
    .gradio-container {
        font-family: 'Open Sans', sans-serif !important;
    }
    
    .gr-button {
        font-family: 'Open Sans', sans-serif !important;
        font-weight: 600 !important;
    }

    .primary-btn {
        background-color: #2436d4 !important;
        color: white !important;
    }

    .primary-btn:hover {
        background-color: #1c2aa8 !important;
    }
    
    [data-testid="textbox"] {
        font-family: 'Open Sans', sans-serif !important;
    }
    
    .gr-padded {
        font-family: 'Open Sans', sans-serif !important;
    }
    
    .gr-input {
        font-family: 'Open Sans', sans-serif !important;
    }
    
    .gr-label {
        font-family: 'Open Sans', sans-serif !important;
    }
""") as iface:
    gr.Markdown("# llms.txt Generator")
    gr.Markdown("Generate an llms.txt file from a website following the specification.")
    
    with gr.Row():
        url_input = gr.Textbox(
            label="Website URL", 
            placeholder="Enter the website URL (e.g., example.com)",
            info="The URL will be automatically prefixed with https:// if not provided"
        )
    
    with gr.Row():
        with gr.Column():
            depth_input = gr.Slider(minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth")
        with gr.Column():
            pages_input = gr.Slider(minimum=10, maximum=100, value=50, step=10, label="Maximum Pages")
    
    generate_btn = gr.Button("Generate llms.txt", variant="primary")
    
    output = gr.Textbox(
        label="Generated llms.txt Content",
        lines=20,
        show_copy_button=True,
        container=True
    )
    
    status = gr.Textbox(label="Status")
    
    generate_btn.click(
        fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)),
        inputs=[url_input, depth_input, pages_input],
        outputs=[output, status]
    )

if __name__ == "__main__":
    iface.launch()