File size: 18,727 Bytes
5e3183d
 
 
 
 
ab2a9d9
 
4f7928b
1c5e607
5e3183d
ab2a9d9
 
5e3183d
dd2349f
ab2a9d9
1c5e607
ab2a9d9
 
 
 
e0ec3b5
ab2a9d9
dd2349f
5e3183d
ab2a9d9
f663df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4206e10
fd8ba41
 
4206e10
fd8ba41
4206e10
 
 
e0ec3b5
fd8ba41
e0ec3b5
 
 
 
4206e10
 
e0ec3b5
 
fd8ba41
f663df1
 
 
 
 
 
 
 
 
 
 
fd8ba41
f663df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4206e10
 
 
 
 
 
 
 
 
 
 
 
23ab6f7
 
 
e0ec3b5
 
 
23ab6f7
 
 
 
 
 
 
 
 
e0ec3b5
 
23ab6f7
 
 
 
 
 
e0ec3b5
 
 
 
03dc650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4206e10
 
 
 
 
 
 
 
 
 
e0ec3b5
4206e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0ec3b5
d469446
e0ec3b5
 
4206e10
e0ec3b5
4206e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03dc650
 
1a04a7a
1c5e607
dd2349f
 
 
03dc650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a04a7a
 
03dc650
 
 
 
d469446
 
1a04a7a
 
03dc650
 
 
1c5e607
1a04a7a
 
 
 
 
 
 
 
 
 
1c5e607
1a04a7a
 
 
 
1c5e607
 
 
4206e10
f21d84e
 
 
4206e10
f21d84e
1a04a7a
dd2349f
 
f21d84e
dd2349f
f21d84e
dd2349f
4206e10
f21d84e
 
4206e10
1a04a7a
 
4206e10
03dc650
 
 
4206e10
8dd9e80
03dc650
 
 
 
 
 
 
 
 
4206e10
66fe9ad
 
 
 
 
4206e10
e0ec3b5
 
 
 
 
f663df1
e0ec3b5
f663df1
e0ec3b5
 
 
 
66fe9ad
 
4206e10
e0ec3b5
 
 
 
 
 
66fe9ad
e0ec3b5
66fe9ad
 
 
 
 
 
4206e10
66fe9ad
dd2349f
4206e10
e9f1fb9
 
1a04a7a
 
 
 
 
dd2349f
 
1a04a7a
1c5e607
 
 
1a04a7a
 
1c5e607
1a04a7a
 
 
dd2349f
1a04a7a
dd2349f
1a04a7a
 
 
dd2349f
1c5e607
 
1a04a7a
dd2349f
 
 
e81ffaf
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
 
 
 
 
 
 
 
 
 
 
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
dd2349f
e81ffaf
 
 
dd2349f
 
1a04a7a
1c5e607
dd2349f
1a04a7a
 
dd2349f
1c5e607
dd2349f
1a04a7a
dd2349f
1a04a7a
 
dd2349f
 
 
1a04a7a
dd2349f
 
 
 
1a04a7a
dd2349f
1c5e607
 
 
 
dd2349f
1a04a7a
dd2349f
4124a56
dd2349f
4124a56
 
 
dd2349f
4124a56
5e3183d
 
dd2349f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import gradio as gr
import requests
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin, urlparse
import asyncio
from collections import defaultdict
import unicodedata
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class WebsiteCrawler:
    def __init__(self, max_depth=3, max_pages=50):
        self.max_depth = max_depth
        self.max_pages = max_pages
        self.visited_urls = set()
        self.url_metadata = defaultdict(dict)
        self.homepage_metadata = None
        self.headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
        }

    def determine_category_importance(self, url, title, desc):
        """Improved category detection"""
        url_lower = url.lower()
        path = urlparse(url).path.lower()
        
        # Homepage
        if path == "/" or path == "":
            return "Main", 10
            
        # Documentation and Features
        if any(x in url_lower for x in ['/docs', '/documentation', '/features', '/pricing']):
            return "Documentation", 8
            
        # API
        elif any(x in url_lower for x in ['/api', '/developer', 'developers']):
            return "API", 8
            
        # About/Company
        elif any(x in url_lower for x in ['/about', '/company', '/partners', '/stories']):
            return "About", 7
            
        # News and Updates    
        elif any(x in url_lower for x in ['/news', '/blog', '/releases', '/academy']):
            return "News", 5
            
        # Tools and Features
        elif any(x in url_lower for x in ['/tools', '/features', '/website', '/keyword']):
            return "Tools", 6
        
        return "Optional", 1
    
    def clean_text(self, text, is_title=False):
        """Improved text cleaning"""
        if not text or len(text.strip()) < 2:
            return ""
            
        # Normalize unicode characters
        text = unicodedata.normalize("NFKD", text)
        text = re.sub(r"[^\x00-\x7F]+", "", text)
        
        # Remove any template variables/placeholders
        text = re.sub(r'\{\{.*?\}\}', '', text)
        text = re.sub(r'\{\%.*?\%\}', '', text)
        text = re.sub(r'\${.*?\}', '', text)
        
        if is_title:
            # Remove common suffixes and fragments for titles
            text = re.sub(r'^\s*Welcome to\s+', '', text)
            text = re.sub(r'\s*[\|\-#:•].*', '', text)
            text = re.sub(r'\s+Homepage$', '', text, flags=re.IGNORECASE)
            
            # Handle overly generic titles
            if text.lower() in ['features', 'home', 'homepage', 'welcome']:
                return ""
        
        # Only return if we have meaningful text
        cleaned = " ".join(text.split()).strip()
        if len(cleaned.split()) < 2 and not is_title:  # Allow single-word titles
            return ""
            
        return cleaned
    
    async def process_homepage(self, url):
        """Specifically process the homepage to extract key metadata"""
        try:
            response = requests.get(url, headers=self.headers, timeout=10)
            response.encoding = "utf-8"
            soup = BeautifulSoup(response.text, "html.parser")
    
            # Extract site name with more fallbacks
            site_name = None
            # Try meta tags first
            site_meta = soup.find("meta", property="og:site_name")
            if site_meta and site_meta.get("content"):
                site_name = site_meta["content"]
                
            # Try structured data
            if not site_name:
                schema = soup.find("script", type="application/ld+json")
                if schema:
                    try:
                        import json
                        data = json.loads(schema.string)
                        if isinstance(data, dict):
                            site_name = data.get("name") or data.get("organizationName")
                    except:
                        pass
                        
            # Try title tag
            if not site_name:
                title_tag = soup.find("title")
                if title_tag:
                    site_name = title_tag.text.split('|')[0].strip()
                    
            # Last resort - use domain name
            if not site_name:
                site_name = urlparse(url).netloc.split('.')[0].capitalize()
    
            # Get homepage description
            description = self.extract_homepage_description(soup)
    
            self.homepage_metadata = {
                "site_name": self.clean_text(site_name, is_title=True),
                "description": description
            }
    
        except Exception as e:
            logger.error(f"Error processing homepage {url}: {str(e)}")
            self.homepage_metadata = {
                "site_name": urlparse(url).netloc.split('.')[0].capitalize(),
                "description": None
            }

    def clean_description(self, desc):
        """Clean description text"""
        if not desc:
            return ""
        # Remove leading dashes, hyphens, or colons
        desc = re.sub(r"^[-:\s]+", "", desc)
        # Remove any strings that are just "Editors", "APIs", etc.
        if len(desc.split()) <= 1:
            return ""
        return desc.strip()

    
    def is_duplicate_content(self, desc, title, url):
        """Improved duplicate/translation detection"""
        if not desc or not title:
            return False
            
        # Skip common translation paths
        translation_indicators = [
            '/welcome', '/bienvenue', '/willkommen', '/benvenuto', 
            '/tervetuloa', '/bienvenido', '/velkommen', '/welkom'
        ]
        if any(indicator in url.lower() for indicator in translation_indicators):
            return True
            
        # Check for similar content length and patterns
        for existing_metadata in self.url_metadata.values():
            existing_desc = existing_metadata.get("description", "")
            if not existing_desc:
                continue
                
            # If descriptions are very similar in length, likely a translation
            if (abs(len(desc) - len(existing_desc)) < 20 and
                len(desc) > 50):  # Only check substantial descriptions
                return True
                
        return False

    def extract_homepage_description(self, soup):
        """Extract description from homepage with multiple fallbacks"""
        # Try meta description first
        meta_desc = soup.find("meta", {"name": "description"})
        if meta_desc and meta_desc.get("content"):
            desc = meta_desc["content"]
            if desc and len(desc.strip()) > 20:
                return self.clean_text(desc)

        # Try OpenGraph description
        og_desc = soup.find("meta", property="og:description")
        if og_desc and og_desc.get("content"):
            desc = og_desc["content"]
            if desc and len(desc.strip()) > 20:
                return self.clean_text(desc)

        # Try first significant paragraph
        for p in soup.find_all("p"):
            text = p.get_text().strip()
            if len(text) > 50 and not any(x in text.lower() for x in ["cookie", "accept", "privacy"]):
                return self.clean_text(text)

        # Try main content area if exists
        main = soup.find("main")
        if main:
            first_p = main.find("p")
            if first_p:
                text = first_p.get_text().strip()
                if len(text) > 50:
                    return self.clean_text(text)

        return None

    async def crawl_page(self, url, depth, base_domain):
        """Crawl a single page and extract information"""
        if (
            depth > self.max_depth
            or url in self.visited_urls
            or len(self.visited_urls) >= self.max_pages
        ):
            return []

        try:
            await asyncio.sleep(1)  # Be polite to servers
            response = requests.get(url, headers=self.headers, timeout=10)
            response.encoding = "utf-8"
            self.visited_urls.add(url)

            soup = BeautifulSoup(response.text, "html.parser")

            # Extract title with fallbacks
            title = None
            meta_title = soup.find("meta", property="og:title")
            if meta_title and meta_title.get("content"):
                title = meta_title["content"]
            if not title:
                title_tag = soup.find("title")
                if title_tag:
                    title = title_tag.text
            if not title:
                h1_tag = soup.find("h1")
                if h1_tag:
                    title = h1_tag.text
            if not title:
                title = url.split("/")[-1]

            title = self.clean_text(title, is_title=True)

            # Extract description with fallbacks
            desc = None
            meta_desc = soup.find("meta", {"name": "description"})
            if meta_desc and meta_desc.get("content"):
                desc = meta_desc["content"]
            if not desc:
                og_desc = soup.find("meta", property="og:description")
                if og_desc and og_desc.get("content"):
                    desc = og_desc["content"]
            if not desc:
                first_p = soup.find("p")
                if first_p:
                    desc = first_p.text

            desc = self.clean_text(desc) if desc else ""

            # Skip if it's duplicate content
            if self.is_duplicate_content(desc, title, url):
                return []

            # Determine category and importance
            category, importance = self.determine_category_importance(url, title, desc)

            # Store metadata
            clean_url = re.sub(r"#.*", "", url).rstrip("/")
            if title and len(title.strip()) > 0:  # Only store if we have a valid title
                self.url_metadata[clean_url] = {
                    "title": title,
                    "description": desc,
                    "category": category,
                    "importance": importance,
                }

            # Find links
            links = []
            for a in soup.find_all("a", href=True):
                href = a["href"]
                if not any(
                    x in href.lower()
                    for x in ["javascript:", "mailto:", ".pdf", ".jpg", ".png", ".gif"]
                ):
                    next_url = urljoin(url, href)
                    if urlparse(next_url).netloc == base_domain:
                        links.append(next_url)
            return links

        except Exception as e:
            logger.error(f"Error crawling {url}: {str(e)}")
            return []

    async def process_homepage(self, url):
        """Specifically process the homepage to extract key metadata"""
        try:
            response = requests.get(url, headers=self.headers, timeout=10)
            response.encoding = "utf-8"
            soup = BeautifulSoup(response.text, "html.parser")

            # Extract site name with fallbacks
            site_name = None
            site_meta = soup.find("meta", property="og:site_name")
            if site_meta and site_meta.get("content"):
                site_name = site_meta["content"]
            if not site_name:
                site_name = soup.find("title").text if soup.find("title") else None
            if not site_name:
                site_name = urlparse(url).netloc.split('.')[0].capitalize()

            # Get homepage description
            description = self.extract_homepage_description(soup)

            self.homepage_metadata = {
                "site_name": self.clean_text(site_name, is_title=True),
                "description": description
            }

        except Exception as e:
            logger.error(f"Error processing homepage {url}: {str(e)}")
            self.homepage_metadata = {
                "site_name": urlparse(url).netloc.split('.')[0].capitalize(),
                "description": None
            }    
    
    async def crawl_website(self, start_url):
        """Crawl website starting from the given URL"""
        # First process the homepage
        await self.process_homepage(start_url)
        
        base_domain = urlparse(start_url).netloc
        queue = [(start_url, 0)]
        seen = {start_url}

        while queue and len(self.visited_urls) < self.max_pages:
            current_url, depth = queue.pop(0)
            if depth > self.max_depth:
                continue

            links = await self.crawl_page(current_url, depth, base_domain)
            for link in links:
                if link not in seen and urlparse(link).netloc == base_domain:
                    seen.add(link)
                    queue.append((link, depth + 1))

    def generate_llms_txt(self):
        """Generate llms.txt content"""
        if not self.url_metadata:
            return "No content was found to generate llms.txt"

        # Sort URLs by importance and remove duplicates
        sorted_urls = []
        seen_titles = set()

        for url, metadata in sorted(
            self.url_metadata.items(),
            key=lambda x: (x[1]["importance"], x[0]),
            reverse=True,
        ):
            if metadata["title"] not in seen_titles:
                sorted_urls.append((url, metadata))
                seen_titles.add(metadata["title"])

        if not sorted_urls:
            return "No valid content was found"

        # Generate content
        content = []

        # Use homepage metadata for main title and description
        main_title = self.homepage_metadata.get("site_name", "Welcome")
        homepage_description = self.homepage_metadata.get("description")

        content.append(f"# {main_title}")
        if homepage_description:
            content.append(f"\n> {homepage_description}")
        elif len(sorted_urls) > 0:
            # Fallback to first good description from content if no homepage description
            for _, metadata in sorted_urls:
                desc = self.clean_description(metadata["description"])
                if desc and len(desc) > 20 and "null" not in desc.lower():
                    content.append(f"\n> {desc}")
                    break

        # Group by category
        categories = defaultdict(list)
        for url, metadata in sorted_urls:
            if metadata["title"] and url:
                categories[metadata["category"]].append((url, metadata))

        # Add sections in a logical order
        category_order = [
            "Main",
            "Documentation",
            "API",
            "Tools",
            "About",
            "News",
            "Optional"
        ]

        for category in category_order:
            if category in categories:
                content.append(f"\n## {category}")

                # Sort links within category by importance and description length
                category_links = sorted(
                    categories[category],
                    key=lambda x: (-len(x[1]["description"] or ""), x[1]["title"])
                )

                links = []
                for url, metadata in category_links:
                    title = metadata["title"].strip()
                    desc = self.clean_description(metadata["description"])
                    if desc:
                        links.append(f"- [{title}]({url}): {desc}")
                    else:
                        links.append(f"- [{title}]({url})")

                content.append("\n".join(links))

        return "\n".join(content)
        


async def process_url(url, max_depth, max_pages):
    """Process URL and generate llms.txt"""
    try:
        # Add https:// if not present
        if not url.startswith(("http://", "https://")):
            url = "https://" + url

        # Validate URL
        result = urlparse(url)
        if not all([result.scheme, result.netloc]):
            return "", "Invalid URL format. Please enter a valid URL."

        # Process website
        crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages))
        await crawler.crawl_website(url)
        content = crawler.generate_llms_txt()

        return content, f"Successfully crawled {len(crawler.visited_urls)} pages."

    except Exception as e:
        return "", f"Error: {str(e)}"


# Create Gradio interface
theme = gr.themes.Soft(primary_hue="blue", font="Open Sans")

with gr.Blocks(
    theme=theme,
    css="""
    @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap');

    .gradio-container {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-button {
        font-family: 'Open Sans', sans-serif !important;
        font-weight: 600 !important;
    }

    .primary-btn {
        background-color: #2436d4 !important;
        color: white !important;
    }

    .primary-btn:hover {
        background-color: #1c2aa8 !important;
    }

    [data-testid="textbox"] {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-padded {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-input {
        font-family: 'Open Sans', sans-serif !important;
    }

    .gr-label {
        font-family: 'Open Sans', sans-serif !important;
    }
""",
) as iface:
    gr.Markdown("# llms.txt Generator")
    gr.Markdown("Generate an llms.txt file from a website following the specification.")

    with gr.Row():
        url_input = gr.Textbox(
            label="Website URL",
            placeholder="Enter the website URL (e.g., example.com)",
            info="The URL will be automatically prefixed with https:// if not provided",
        )

    with gr.Row():
        with gr.Column():
            depth_input = gr.Slider(
                minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth"
            )
        with gr.Column():
            pages_input = gr.Slider(
                minimum=10, maximum=100, value=50, step=10, label="Maximum Pages"
            )

    generate_btn = gr.Button("Generate llms.txt", variant="primary")

    output = gr.Textbox(
        label="Generated llms.txt Content",
        lines=20,
        show_copy_button=True,
        container=True,
    )

    status = gr.Textbox(label="Status")

    generate_btn.click(
        fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)),
        inputs=[url_input, depth_input, pages_input],
        outputs=[output, status],
    )

if __name__ == "__main__":
    iface.launch()