File size: 8,290 Bytes
e724d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc92713
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import gradio as gr
import advertools as adv
import pandas as pd
import re
from secrets import token_hex
import logging
import os
from markitdown import MarkItDown
from typing import Tuple, List, Optional
import validators

# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

# Initialize MarkItDown
md_converter = MarkItDown()


def validate_url(url: str) -> Tuple[bool, str]:
    """Validate URL format and accessibility."""
    if not url:
        return False, "URL is required"

    if not url.startswith(("http://", "https://")):
        url = "https://" + url

    if not validators.url(url):
        return False, "Invalid URL format"

    return True, url


def safe_crawl(url: str, output_file: str) -> bool:
    """Safely perform a web crawl with timeout and error handling."""
    try:
        adv.crawl(
            url,
            output_file,
            follow_links=False,
            custom_settings={
                "CLOSESPIDER_TIMEOUT": 30,
                "ROBOTSTXT_OBEY": True,
                "CONCURRENT_REQUESTS_PER_DOMAIN": 1,
                "USER_AGENT": "Mozilla/5.0 (compatible; LLMContentBot/1.0)",
                "DOWNLOAD_TIMEOUT": 10,
            },
        )
        return True
    except Exception as e:
        logger.error(f"Crawl error for {url}: {str(e)}")
        return False


def clean_text(text: str) -> str:
    """Clean and format text by removing extra whitespace and normalizing spacing."""
    if not text:
        return ""
    # Remove extra whitespace and newlines
    text = re.sub(r"[\n\s]+", " ", text)
    # Split camelCase words
    text = re.sub(r"([a-z])([A-Z])", r"\1 \2", text)
    # Clean extra spaces
    text = " ".join(text.split())
    return text.strip()


def process_link_pair(url: str, text: str, seen_links: set) -> Optional[str]:
    """Process a single link-text pair and return markdown if valid."""
    if not url or not text:
        return None

    url = url.strip()
    text = clean_text(text)

    if not text or not url or url in seen_links:
        return None

    seen_links.add(url)
    return f"## {text}\n[{text}]({url})"


def process_links(crawl_df: pd.DataFrame, link_types: List[str]) -> str:
    """Process links based on selected types with deduplication."""
    try:
        all_links = []
        seen_links = set()  # Track unique URLs

        if "All links" in link_types or not link_types:
            link_df = adv.crawlytics.links(crawl_df)
            for link, text in link_df[["link", "text"]].dropna().values:
                if md_link := process_link_pair(link, text, seen_links):
                    all_links.append(md_link)
        else:
            for link_type in link_types:
                type_match = re.findall(r"header|footer|nav", link_type.lower())
                if type_match:
                    col_prefix = type_match[0]
                    urls = crawl_df[f"{col_prefix}_links_url"].iloc[0]
                    texts = crawl_df[f"{col_prefix}_links_text"].iloc[0]

                    if urls and texts:
                        urls = urls.split("@@")
                        texts = texts.split("@@")

                        for url, text in zip(urls, texts):
                            if md_link := process_link_pair(url, text, seen_links):
                                all_links.append(md_link)

        return "\n\n".join(all_links)
    except Exception as e:
        logger.error(f"Link processing error: {str(e)}")
        return ""


def process_url(url: str, link_types: List[str]) -> Tuple[str, str]:
    """Process website URL and generate markdown content."""
    valid, result = validate_url(url)
    if not valid:
        return "", result

    url = result
    output_file = f"crawl_{token_hex(6)}.jsonl"

    try:
        if not safe_crawl(url, output_file):
            return "", "Crawl failed or timed out"

        crawl_df = pd.read_json(output_file, lines=True)
        if crawl_df.empty:
            return "", "No data found for the URL"

        # Extract and clean title and description
        title = (
            clean_text(crawl_df["title"].iloc[0])
            if "title" in crawl_df.columns
            else "Untitled"
        )
        meta_desc = (
            clean_text(crawl_df["meta_desc"].iloc[0])
            if "meta_desc" in crawl_df.columns
            else ""
        )

        # Process links
        links_content = process_links(crawl_df, link_types)

        # Generate final markdown
        content = f"# {title}\n\n"
        if meta_desc:
            content += f"> {meta_desc}\n\n"
        content += links_content

        return content, f"Successfully processed {url}"

    except Exception as e:
        logger.error(f"Error processing {url}: {str(e)}")
        return "", f"Error: {str(e)}"
    finally:
        if os.path.exists(output_file):
            os.remove(output_file)


def process_file(file: gr.File) -> Tuple[str, str]:
    """Convert uploaded file to markdown."""
    if not file:
        return "", "No file uploaded"

    supported_extensions = {".pdf", ".docx", ".pptx", ".xlsx", ".html", ".txt"}
    file_ext = os.path.splitext(file.name)[1].lower()

    if file_ext not in supported_extensions:
        return "", f"Unsupported file type: {file_ext}"

    try:
        result = md_converter.convert(file.name)
        return result.text_content, "File processed successfully"
    except Exception as e:
        logger.error(f"File processing error: {str(e)}")
        return "", f"Error processing file: {str(e)}"


# Custom CSS for styling
css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');

body {
    font-family: 'Open Sans', sans-serif !important;
}

.primary-btn {
    background-color: #3452db !important;
}

.primary-btn:hover {
    background-color: #2a41af !important;
}
"""

# Create a custom theme
theme = gr.themes.Soft(
    primary_hue=gr.themes.colors.Color(
        name="blue",
        c50="#eef1ff",
        c100="#e0e5ff",
        c200="#c3cbff",
        c300="#a5b2ff",
        c400="#8798ff",
        c500="#6a7eff",
        c600="#3452db",
        c700="#2a41af",
        c800="#1f3183",
        c900="#152156",
        c950="#0a102b",
    )
)

# Create interface
with gr.Blocks(
    theme=gr.themes.Soft(),
    css=css,
    head="""
        <link rel="canonical" href="https://wordlift.io/generate-llms-txt/" />
        <meta name="description" content="Generate your LLMs.txt file - A WordLift tool to help you manage Large Language Models access to your content." />
        <meta property="og:title" content="LLMs.txt Generator by WordLift" />
        <meta property="og:description" content="Generate your LLMs.txt file - A WordLift tool to help you manage Large Language Models access to your content." />
        <meta property="og:url" content="https://wordlift.io/generate-llms-txt/" />
    """,
) as iface:
    gr.Markdown("# LLMs.txt Generator")

    with gr.Tab("Website URL"):
        url_input = gr.Textbox(label="Website URL", placeholder="example.com")
        link_types = gr.Dropdown(
            choices=["All links", "<header> links", "<nav> links", "<footer> links"],
            multiselect=True,
            value=["All links"],
            label="Link Types to Extract",
        )
        url_button = gr.Button("Process URL", variant="primary")
        url_output = gr.Textbox(
            label="Generated Content", lines=20, show_copy_button=True
        )
        url_status = gr.Textbox(label="Status")

        url_button.click(
            process_url,
            inputs=[url_input, link_types],
            outputs=[url_output, url_status],
        )

    with gr.Tab("File Converter"):
        file_input = gr.File(label="Upload Document")
        file_button = gr.Button("Convert to Markdown", variant="primary")
        file_output = gr.Textbox(
            label="Converted Content", lines=20, show_copy_button=True
        )
        file_status = gr.Textbox(label="Status")

        file_button.click(
            process_file, inputs=[file_input], outputs=[file_output, file_status]
        )

if __name__ == "__main__":
    iface.launch()