create-llms-txt / app.py
cyberandy's picture
Update app.py
4f7928b verified
raw
history blame
10.4 kB
import gradio as gr
import requests
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin, urlparse
import markdown
from concurrent.futures import ThreadPoolExecutor
import asyncio
from collections import defaultdict
import time
import logging
import unicodedata
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class WebsiteCrawler:
def __init__(self, max_depth=3, max_pages=50, timeout=30):
self.max_depth = max_depth
self.max_pages = max_pages
self.timeout = timeout
self.visited_urls = set()
self.url_content = {}
self.url_metadata = defaultdict(dict)
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
def normalize_text(self, text):
"""Normalize text to handle encoding issues"""
if not text:
return ""
# Normalize unicode characters
text = unicodedata.normalize('NFKD', text)
# Replace special quotes and dashes with standard characters
text = text.replace('"', '"').replace('"', '"').replace(''', "'").replace('—', '-')
# Remove any remaining non-ASCII characters
text = text.encode('ascii', 'ignore').decode('ascii')
# Clean up extra whitespace
text = ' '.join(text.split())
return text
def is_valid_url(self, url, base_domain):
"""Check if URL is valid and belongs to the same domain"""
try:
parsed = urlparse(url)
base_parsed = urlparse(base_domain)
return (parsed.netloc == base_parsed.netloc and
parsed.scheme in ['http', 'https'] and
not url.endswith(('.pdf', '.jpg', '.png', '.gif', '.zip')))
except:
return False
def extract_content(self, soup):
"""Extract meaningful content from HTML"""
# Remove script and style elements
for element in soup(['script', 'style', 'nav', 'footer', 'header']):
element.decompose()
# Get main content
main_content = soup.find('main') or soup.find('article') or soup.find('div', {'class': re.compile(r'content|main', re.I)})
if main_content:
return self.normalize_text(main_content.get_text(strip=True))
return self.normalize_text(soup.get_text(strip=True))
def get_page_metadata(self, soup, url):
"""Extract metadata from the page"""
metadata = {
'title': None,
'description': None,
'importance': 0,
'category': 'Optional'
}
# Title extraction with normalization
title = (
soup.find('meta', property='og:title')['content'] if soup.find('meta', property='og:title') else
soup.find('title').text if soup.find('title') else
soup.find('h1').text if soup.find('h1') else
url.split('/')[-1]
)
metadata['title'] = self.normalize_text(title)
# Description extraction with normalization
description = (
soup.find('meta', {'name': 'description'})['content'] if soup.find('meta', {'name': 'description'}) else
soup.find('meta', property='og:description')['content'] if soup.find('meta', property='og:description') else
""
)
metadata['description'] = self.normalize_text(description)
# Calculate importance based on various factors
importance = 0
if 'docs' in url.lower() or 'documentation' in url.lower():
importance += 5
metadata['category'] = 'Docs'
if 'api' in url.lower():
importance += 4
metadata['category'] = 'API'
if 'guide' in url.lower() or 'tutorial' in url.lower():
importance += 3
metadata['category'] = 'Guides'
if 'example' in url.lower():
importance += 2
metadata['category'] = 'Examples'
if 'blog' in url.lower():
importance += 1
metadata['category'] = 'Blog'
metadata['importance'] = importance
return metadata
async def crawl_page(self, url, depth, base_domain):
"""Crawl a single page and extract information"""
if depth > self.max_depth or url in self.visited_urls or len(self.visited_urls) >= self.max_pages:
return []
try:
response = requests.get(url, headers=self.headers, timeout=self.timeout)
response.encoding = 'utf-8' # Explicitly set encoding
response.raise_for_status()
self.visited_urls.add(url)
soup = BeautifulSoup(response.text, 'html.parser')
content = self.extract_content(soup)
metadata = self.get_page_metadata(soup, url)
self.url_content[url] = content
self.url_metadata[url] = metadata
# Find all links
links = []
for a in soup.find_all('a', href=True):
next_url = urljoin(url, a['href'])
if self.is_valid_url(next_url, base_domain):
links.append(next_url)
return links
except Exception as e:
logger.error(f"Error crawling {url}: {str(e)}")
return []
async def crawl_website(self, start_url):
"""Crawl website starting from the given URL"""
base_domain = start_url
queue = [(start_url, 0)]
seen = {start_url}
while queue and len(self.visited_urls) < self.max_pages:
current_url, depth = queue.pop(0)
if depth > self.max_depth:
continue
links = await self.crawl_page(current_url, depth, base_domain)
for link in links:
if link not in seen:
seen.add(link)
queue.append((link, depth + 1))
def generate_llms_txt(self):
"""Generate llms.txt content from crawled data"""
# Sort URLs by importance
sorted_urls = sorted(
self.url_metadata.items(),
key=lambda x: (x[1]['importance'], x[0]),
reverse=True
)
# Group URLs by category
categorized_urls = defaultdict(list)
for url, metadata in sorted_urls:
categorized_urls[metadata['category']].append((url, metadata))
# Generate content
content = []
# Add main title and description
if sorted_urls:
main_metadata = sorted_urls[0][1]
content.append(f"# {main_metadata['title']}\n")
content.append(f"> {main_metadata['description']}\n")
# Add categorized sections
priority_order = ['Docs', 'API', 'Guides', 'Examples', 'Blog', 'Optional']
for category in priority_order:
if category in categorized_urls:
content.append(f"\n## {category}\n")
for url, metadata in categorized_urls[category]:
title = metadata['title']
desc = metadata['description']
if desc:
content.append(f"- [{title}]({url}): {desc[:100]}...\n")
else:
content.append(f"- [{title}]({url})\n")
return "\n".join(content)
async def process_url(url, max_depth, max_pages):
"""Process URL and generate llms.txt"""
try:
# Add https:// if not present
if not url.startswith(('http://', 'https://')):
url = 'https://' + url
# Validate URL format
try:
result = urlparse(url)
if not all([result.scheme, result.netloc]):
return "", "Invalid URL format. Please enter a valid URL."
except:
return "", "Invalid URL format. Please enter a valid URL."
# Create crawler and process
crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages))
await crawler.crawl_website(url)
content = crawler.generate_llms_txt()
return content, f"Successfully crawled {len(crawler.visited_urls)} pages. You can now copy the generated content."
except Exception as e:
return "", f"Error: {str(e)}"
# Create the Gradio interface with custom CSS for Open Sans font
css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap');
body, .gradio-container {
font-family: 'Open Sans', sans-serif !important;
}
.gr-box {
border-radius: 8px !important;
border: 1px solid #e5e7eb !important;
}
.gr-button {
font-family: 'Open Sans', sans-serif !important;
font-weight: 600 !important;
}
.gr-input {
font-family: 'Open Sans', sans-serif !important;
}
"""
# Create the Gradio interface
iface = gr.Interface(
fn=lambda url, max_depth, max_pages: asyncio.run(process_url(url, max_depth, max_pages)),
inputs=[
gr.Textbox(
label="Website URL",
placeholder="Enter the website URL (e.g., example.com or https://example.com)",
info="The URL will be automatically prefixed with https:// if no protocol is specified."
),
gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="Maximum Crawl Depth",
info="Higher values will result in more thorough but slower crawling"
),
gr.Slider(
minimum=10,
maximum=100,
value=50,
step=10,
label="Maximum Pages to Crawl",
info="Higher values will result in more comprehensive but slower results"
)
],
outputs=[
gr.Textbox(
label="Generated llms.txt Content",
lines=20,
info="Copy this content to create your llms.txt file"
),
gr.Textbox(label="Status")
],
title="llms.txt Generator",
description="Generate an llms.txt file from a website following the specification. The tool crawls the website and creates a structured markdown file suitable for LLMs.",
theme=gr.themes.Soft(),
css=css
)
# Launch the app
if __name__ == "__main__":
iface.launch()