Spaces:
Running
Running
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
import re | |
from urllib.parse import urljoin, urlparse | |
import asyncio | |
from collections import defaultdict | |
import unicodedata | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class WebsiteCrawler: | |
def __init__(self, max_depth=3, max_pages=50): | |
self.max_depth = max_depth | |
self.max_pages = max_pages | |
self.visited_urls = set() | |
self.url_metadata = defaultdict(dict) | |
self.headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" | |
} | |
def clean_text(self, text, is_title=False): | |
"""Clean and normalize text""" | |
if not text: | |
return "" | |
# Normalize unicode characters | |
text = unicodedata.normalize("NFKD", text) | |
text = re.sub(r"[^\x00-\x7F]+", "", text) | |
if is_title: | |
# Remove common suffixes and fragments for titles | |
text = re.sub(r"\s*[\|\-#:•].*", "", text) | |
text = re.sub(r"^\s*Welcome to\s+", "", text) | |
text = text.replace("docusaurus_skipToContent_fallback", "") | |
return " ".join(text.split()).strip() | |
async def crawl_page(self, url, depth, base_domain): | |
"""Crawl a single page and extract information""" | |
if ( | |
depth > self.max_depth | |
or url in self.visited_urls | |
or len(self.visited_urls) >= self.max_pages | |
): | |
return [] | |
try: | |
response = requests.get(url, headers=self.headers, timeout=10) | |
response.encoding = "utf-8" | |
self.visited_urls.add(url) | |
soup = BeautifulSoup(response.text, "html.parser") | |
# Extract title with fallbacks | |
title = None | |
meta_title = soup.find("meta", property="og:title") | |
if meta_title and meta_title.get("content"): | |
title = meta_title["content"] | |
if not title: | |
title_tag = soup.find("title") | |
if title_tag: | |
title = title_tag.text | |
if not title: | |
h1_tag = soup.find("h1") | |
if h1_tag: | |
title = h1_tag.text | |
if not title: | |
title = url.split("/")[-1] | |
title = self.clean_text(title, is_title=True) | |
# Extract description with fallbacks | |
desc = None | |
meta_desc = soup.find("meta", {"name": "description"}) | |
if meta_desc and meta_desc.get("content"): | |
desc = meta_desc["content"] | |
if not desc: | |
og_desc = soup.find("meta", property="og:description") | |
if og_desc and og_desc.get("content"): | |
desc = og_desc["content"] | |
if not desc: | |
first_p = soup.find("p") | |
if first_p: | |
desc = first_p.text | |
desc = self.clean_text(desc) if desc else "" | |
# Determine category and importance | |
url_lower = url.lower() | |
category = "Optional" | |
importance = 0 | |
if "docs" in url_lower or "documentation" in url_lower: | |
category = "Docs" | |
importance = 5 | |
elif "api" in url_lower: | |
category = "API" | |
importance = 4 | |
elif "guide" in url_lower or "tutorial" in url_lower: | |
category = "Guides" | |
importance = 3 | |
elif "example" in url_lower: | |
category = "Examples" | |
importance = 2 | |
elif "blog" in url_lower: | |
category = "Blog" | |
importance = 1 | |
# Store metadata | |
clean_url = re.sub(r"#.*", "", url).rstrip("/") | |
if title and len(title.strip()) > 0: # Only store if we have a valid title | |
self.url_metadata[clean_url] = { | |
"title": title, | |
"description": desc, | |
"category": category, | |
"importance": importance, | |
} | |
# Find links | |
links = [] | |
for a in soup.find_all("a", href=True): | |
href = a["href"] | |
if not any( | |
x in href.lower() | |
for x in ["javascript:", "mailto:", ".pdf", ".jpg", ".png", ".gif"] | |
): | |
next_url = urljoin(url, href) | |
if urlparse(next_url).netloc == base_domain: | |
links.append(next_url) | |
return links | |
except Exception as e: | |
logger.error(f"Error crawling {url}: {str(e)}") | |
return [] | |
async def crawl_website(self, start_url): | |
"""Crawl website starting from the given URL""" | |
base_domain = urlparse(start_url).netloc | |
queue = [(start_url, 0)] | |
seen = {start_url} | |
while queue and len(self.visited_urls) < self.max_pages: | |
current_url, depth = queue.pop(0) | |
if depth > self.max_depth: | |
continue | |
links = await self.crawl_page(current_url, depth, base_domain) | |
for link in links: | |
if link not in seen and urlparse(link).netloc == base_domain: | |
seen.add(link) | |
queue.append((link, depth + 1)) | |
def clean_description(self, desc): | |
"""Clean description text""" | |
if not desc: | |
return "" | |
# Remove leading dashes, hyphens, or colons | |
desc = re.sub(r"^[-:\s]+", "", desc) | |
# Remove any strings that are just "Editors", "APIs", etc. | |
if len(desc.split()) <= 1: | |
return "" | |
return desc.strip() | |
def generate_llms_txt(self): | |
"""Generate llms.txt content""" | |
if not self.url_metadata: | |
return "No content was found to generate llms.txt" | |
# Sort URLs by importance and remove duplicates | |
sorted_urls = [] | |
seen_titles = set() | |
for url, metadata in sorted( | |
self.url_metadata.items(), | |
key=lambda x: (x[1]["importance"], x[0]), | |
reverse=True, | |
): | |
if metadata["title"] not in seen_titles: | |
sorted_urls.append((url, metadata)) | |
seen_titles.add(metadata["title"]) | |
if not sorted_urls: | |
return "No valid content was found" | |
# Generate content | |
content = [] | |
# Find the best title for the main header (prefer "Welcome" or "Overview") | |
main_title = "Welcome" # Default to Welcome | |
# Find a good description for the blockquote | |
best_description = None | |
for _, metadata in sorted_urls: | |
desc = self.clean_description(metadata["description"]) | |
if desc and len(desc) > 20 and "null" not in desc.lower(): | |
best_description = desc | |
break | |
content.append(f"# {main_title}") | |
if best_description: | |
content.append(f"\n> {best_description}") | |
# Group by category | |
categories = defaultdict(list) | |
for url, metadata in sorted_urls: | |
if metadata["title"] and url: | |
categories[metadata["category"]].append((url, metadata)) | |
# Add sections | |
for category in ["Docs", "API", "Guides", "Examples", "Blog", "Optional"]: | |
if category in categories: | |
content.append(f"\n## {category}") | |
# Add links without extra newlines | |
links = [] | |
for url, metadata in categories[category]: | |
title = metadata["title"].strip() | |
desc = self.clean_description(metadata["description"]) | |
if desc: | |
links.append(f"- [{title}]({url}): {desc}") | |
else: | |
links.append(f"- [{title}]({url})") | |
content.append("\n".join(links)) | |
return "\n".join(content) | |
async def process_url(url, max_depth, max_pages): | |
"""Process URL and generate llms.txt""" | |
try: | |
# Add https:// if not present | |
if not url.startswith(("http://", "https://")): | |
url = "https://" + url | |
# Validate URL | |
result = urlparse(url) | |
if not all([result.scheme, result.netloc]): | |
return "", "Invalid URL format. Please enter a valid URL." | |
# Process website | |
crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages)) | |
await crawler.crawl_website(url) | |
content = crawler.generate_llms_txt() | |
return content, f"Successfully crawled {len(crawler.visited_urls)} pages." | |
except Exception as e: | |
return "", f"Error: {str(e)}" | |
# Create Gradio interface | |
theme = gr.themes.Soft(primary_hue="blue", font="Open Sans") | |
with gr.Blocks( | |
theme=theme, | |
css=""" | |
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap'); | |
.gradio-container { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
.gr-button { | |
font-family: 'Open Sans', sans-serif !important; | |
font-weight: 600 !important; | |
} | |
.primary-btn { | |
background-color: #2436d4 !important; | |
color: white !important; | |
} | |
.primary-btn:hover { | |
background-color: #1c2aa8 !important; | |
} | |
[data-testid="textbox"] { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
.gr-padded { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
.gr-input { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
.gr-label { | |
font-family: 'Open Sans', sans-serif !important; | |
} | |
""", | |
) as iface: | |
gr.Markdown("# llms.txt Generator") | |
gr.Markdown("Generate an llms.txt file from a website following the specification.") | |
with gr.Row(): | |
url_input = gr.Textbox( | |
label="Website URL", | |
placeholder="Enter the website URL (e.g., example.com)", | |
info="The URL will be automatically prefixed with https:// if not provided", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
depth_input = gr.Slider( | |
minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth" | |
) | |
with gr.Column(): | |
pages_input = gr.Slider( | |
minimum=10, maximum=100, value=50, step=10, label="Maximum Pages" | |
) | |
generate_btn = gr.Button("Generate llms.txt", variant="primary") | |
output = gr.Textbox( | |
label="Generated llms.txt Content", | |
lines=20, | |
show_copy_button=True, | |
container=True, | |
) | |
status = gr.Textbox(label="Status") | |
generate_btn.click( | |
fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)), | |
inputs=[url_input, depth_input, pages_input], | |
outputs=[output, status], | |
) | |
if __name__ == "__main__": | |
iface.launch() | |