import gradio as gr import requests from bs4 import BeautifulSoup import re from urllib.parse import urljoin, urlparse import asyncio import aiohttp from collections import defaultdict import unicodedata import logging import ssl import brotli # Add this import logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class WebsiteCrawler: def __init__(self, max_depth=3, max_pages=50): self.max_depth = max_depth self.max_pages = max_pages self.visited_urls = set() self.url_metadata = defaultdict(dict) self.homepage_metadata = None self.headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Language": "en-US,en;q=0.5", "Accept-Encoding": "gzip, deflate, br", "DNT": "1", "Connection": "keep-alive", "Upgrade-Insecure-Requests": "1", } self.session = None async def get_session(self): if self.session is None: ssl_context = ssl.create_default_context() ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE # Configure client with brotli support connector = aiohttp.TCPConnector(ssl=ssl_context) self.session = aiohttp.ClientSession( connector=connector, timeout=aiohttp.ClientTimeout(total=30) ) return self.session async def decode_response(self, response): """Handle various content encodings including brotli""" content_encoding = response.headers.get("Content-Encoding", "").lower() content = await response.read() if content_encoding == "br": try: decoded = brotli.decompress(content) return decoded.decode("utf-8", errors="ignore") except Exception as e: logger.error(f"Error decoding brotli content: {str(e)}") return content.decode("utf-8", errors="ignore") elif content_encoding == "gzip": import gzip try: decoded = gzip.decompress(content) return decoded.decode("utf-8", errors="ignore") except Exception as e: logger.error(f"Error decoding gzip content: {str(e)}") return content.decode("utf-8", errors="ignore") else: return content.decode("utf-8", errors="ignore") def clean_text(self, text, is_title=False): """Clean and normalize text""" if not text: return "" # Normalize unicode characters text = unicodedata.normalize("NFKD", text) text = re.sub(r"[^\x00-\x7F]+", "", text) if is_title: # Remove common suffixes and fragments for titles text = re.sub(r"\s*[\|\-#:•].*", "", text) text = re.sub(r"^\s*Welcome to\s+", "", text) text = text.replace("docusaurus_skipToContent_fallback", "") return " ".join(text.split()).strip() async def process_homepage(self, url): """Specifically process the homepage to extract key metadata""" try: session = await self.get_session() async with session.get( url, headers=self.headers, allow_redirects=True ) as response: if response.status != 200: raise Exception( f"Failed to fetch homepage: status {response.status}" ) text = await self.decode_response(response) soup = BeautifulSoup(text, "html.parser") # Extract site name site_name = None site_meta = soup.find("meta", property="og:site_name") if site_meta and site_meta.get("content"): site_name = site_meta["content"] if not site_name: title_tag = soup.find("title") if title_tag: site_name = title_tag.text.split("|")[0].strip() if not site_name: site_name = urlparse(url).netloc.split(".")[0].capitalize() # Get homepage description description = None meta_desc = soup.find("meta", {"name": "description"}) if meta_desc and meta_desc.get("content"): description = meta_desc["content"] if not description: og_desc = soup.find("meta", property="og:description") if og_desc and og_desc.get("content"): description = og_desc["content"] if not description: first_p = soup.find("p") if first_p: description = first_p.text self.homepage_metadata = { "site_name": self.clean_text(site_name, is_title=True), "description": ( self.clean_text(description) if description else None ), } except Exception as e: logger.error(f"Error processing homepage {url}: {str(e)}") self.homepage_metadata = { "site_name": urlparse(url).netloc.split(".")[0].capitalize(), "description": None, } async def crawl_website(self, start_url): """Crawl website starting from the given URL""" try: # First process the homepage logger.info(f"Processing homepage: {start_url}") await self.process_homepage(start_url) base_domain = urlparse(start_url).netloc queue = [(start_url, 0)] seen = {start_url} while queue and len(self.visited_urls) < self.max_pages: current_url, depth = queue.pop(0) if depth > self.max_depth: continue logger.info(f"Crawling page: {current_url} (depth: {depth})") links = await self.crawl_page(current_url, depth, base_domain) logger.info(f"Found {len(links)} links on {current_url}") for link in links: if link not in seen and urlparse(link).netloc == base_domain: seen.add(link) queue.append((link, depth + 1)) logger.info(f"Crawl completed. Visited {len(self.visited_urls)} pages") except Exception as e: logger.error(f"Error during crawl: {str(e)}") raise finally: await self.cleanup() def generate_llms_txt(self): """Generate llms.txt content""" if not self.url_metadata: return "No content was found to generate llms.txt" # Sort URLs by importance and remove duplicates sorted_urls = [] seen_titles = set() for url, metadata in sorted( self.url_metadata.items(), key=lambda x: (x[1]["importance"], x[0]), reverse=True, ): if metadata["title"] not in seen_titles: sorted_urls.append((url, metadata)) seen_titles.add(metadata["title"]) if not sorted_urls: return "No valid content was found" # Generate content content = [] # Use homepage metadata for main title and description main_title = self.homepage_metadata.get("site_name", "Welcome") homepage_description = self.homepage_metadata.get("description") content.append(f"# {main_title}") if homepage_description: content.append(f"\n> {homepage_description}") else: # Fallback to first good description from content for _, metadata in sorted_urls: desc = self.clean_description(metadata["description"]) if desc and len(desc) > 20 and "null" not in desc.lower(): content.append(f"\n> {desc}") break # Group by category categories = defaultdict(list) for url, metadata in sorted_urls: if metadata["title"] and url: categories[metadata["category"]].append((url, metadata)) # Add sections for category in ["Docs", "API", "Guides", "Examples", "Blog", "Optional"]: if category in categories: content.append(f"\n## {category}") # Add links without extra newlines links = [] for url, metadata in categories[category]: title = metadata["title"].strip() desc = self.clean_description(metadata["description"]) if desc: links.append(f"- [{title}]({url}): {desc}") else: links.append(f"- [{title}]({url})") content.append("\n".join(links)) return "\n".join(content) # Process URL function (outside the class) async def process_url(url, max_depth, max_pages): """Process URL and generate llms.txt""" try: # Add https:// if not present if not url.startswith(("http://", "https://")): url = "https://" + url # Validate URL result = urlparse(url) if not all([result.scheme, result.netloc]): return "", "Invalid URL format. Please enter a valid URL." logger.info(f"Starting crawl of {url}") # Process website crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages)) await crawler.crawl_website(url) logger.info("Generating llms.txt content") content = crawler.generate_llms_txt() if not content or content.strip() == "": return "", "No content was generated. Check the logs for details." return content, f"Successfully crawled {len(crawler.visited_urls)} pages." except Exception as e: logger.error(f"Error processing URL {url}: {str(e)}") return "", f"Error: {str(e)}" # Create Gradio interface theme = gr.themes.Soft(primary_hue="blue", font="Open Sans") with gr.Blocks( theme=theme, css=""" @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap'); .gradio-container { font-family: 'Open Sans', sans-serif !important; } .gr-button { font-family: 'Open Sans', sans-serif !important; font-weight: 600 !important; } .primary-btn { background-color: #2436d4 !important; color: white !important; } .primary-btn:hover { background-color: #1c2aa8 !important; } [data-testid="textbox"] { font-family: 'Open Sans', sans-serif !important; } .gr-padded { font-family: 'Open Sans', sans-serif !important; } .gr-input { font-family: 'Open Sans', sans-serif !important; } .gr-label { font-family: 'Open Sans', sans-serif !important; } """, ) as iface: gr.Markdown("# llms.txt Generator") gr.Markdown("Generate an llms.txt file from a website following the specification.") with gr.Row(): url_input = gr.Textbox( label="Website URL", placeholder="Enter the website URL (e.g., example.com)", info="The URL will be automatically prefixed with https:// if not provided", ) with gr.Row(): with gr.Column(): depth_input = gr.Slider( minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth" ) with gr.Column(): pages_input = gr.Slider( minimum=10, maximum=100, value=50, step=10, label="Maximum Pages" ) generate_btn = gr.Button("Generate llms.txt", variant="primary") output = gr.Textbox( label="Generated llms.txt Content", lines=20, show_copy_button=True, container=True, ) status = gr.Textbox(label="Status") generate_btn.click( fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)), inputs=[url_input, depth_input, pages_input], outputs=[output, status], ) if __name__ == "__main__": iface.launch()