import gradio as gr import requests from bs4 import BeautifulSoup import re from urllib.parse import urljoin, urlparse import asyncio from collections import defaultdict import unicodedata import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class WebsiteCrawler: def __init__(self, max_depth=3, max_pages=50): self.max_depth = max_depth self.max_pages = max_pages self.visited_urls = set() self.url_metadata = defaultdict(dict) self.headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" } def clean_text(self, text, is_title=False): """Clean and normalize text""" if not text: return "" # Normalize unicode characters text = unicodedata.normalize("NFKD", text) text = re.sub(r"[^\x00-\x7F]+", "", text) if is_title: # Remove common suffixes and fragments for titles text = re.sub(r"\s*[\|\-#:•].*", "", text) text = re.sub(r"^\s*Welcome to\s+", "", text) text = text.replace("docusaurus_skipToContent_fallback", "") return " ".join(text.split()).strip() async def crawl_page(self, url, depth, base_domain): """Crawl a single page and extract information""" if ( depth > self.max_depth or url in self.visited_urls or len(self.visited_urls) >= self.max_pages ): return [] try: response = requests.get(url, headers=self.headers, timeout=10) response.encoding = "utf-8" self.visited_urls.add(url) soup = BeautifulSoup(response.text, "html.parser") # Extract title with fallbacks title = None meta_title = soup.find("meta", property="og:title") if meta_title and meta_title.get("content"): title = meta_title["content"] if not title: title_tag = soup.find("title") if title_tag: title = title_tag.text if not title: h1_tag = soup.find("h1") if h1_tag: title = h1_tag.text if not title: title = url.split("/")[-1] title = self.clean_text(title, is_title=True) # Extract description with fallbacks desc = None meta_desc = soup.find("meta", {"name": "description"}) if meta_desc and meta_desc.get("content"): desc = meta_desc["content"] if not desc: og_desc = soup.find("meta", property="og:description") if og_desc and og_desc.get("content"): desc = og_desc["content"] if not desc: first_p = soup.find("p") if first_p: desc = first_p.text desc = self.clean_text(desc) if desc else "" # Determine category and importance url_lower = url.lower() category = "Optional" importance = 0 if "docs" in url_lower or "documentation" in url_lower: category = "Docs" importance = 5 elif "api" in url_lower: category = "API" importance = 4 elif "guide" in url_lower or "tutorial" in url_lower: category = "Guides" importance = 3 elif "example" in url_lower: category = "Examples" importance = 2 elif "blog" in url_lower: category = "Blog" importance = 1 # Store metadata clean_url = re.sub(r"#.*", "", url).rstrip("/") if title and len(title.strip()) > 0: # Only store if we have a valid title self.url_metadata[clean_url] = { "title": title, "description": desc, "category": category, "importance": importance, } # Find links links = [] for a in soup.find_all("a", href=True): href = a["href"] if not any( x in href.lower() for x in ["javascript:", "mailto:", ".pdf", ".jpg", ".png", ".gif"] ): next_url = urljoin(url, href) if urlparse(next_url).netloc == base_domain: links.append(next_url) return links except Exception as e: logger.error(f"Error crawling {url}: {str(e)}") return [] async def crawl_website(self, start_url): """Crawl website starting from the given URL""" base_domain = urlparse(start_url).netloc queue = [(start_url, 0)] seen = {start_url} while queue and len(self.visited_urls) < self.max_pages: current_url, depth = queue.pop(0) if depth > self.max_depth: continue links = await self.crawl_page(current_url, depth, base_domain) for link in links: if link not in seen and urlparse(link).netloc == base_domain: seen.add(link) queue.append((link, depth + 1)) def clean_description(self, desc): """Clean description text""" if not desc: return "" # Remove leading dashes, hyphens, or colons desc = re.sub(r"^[-:\s]+", "", desc) # Remove any strings that are just "Editors", "APIs", etc. if len(desc.split()) <= 1: return "" return desc.strip() def generate_llms_txt(self): """Generate llms.txt content""" if not self.url_metadata: return "No content was found to generate llms.txt" # Sort URLs by importance and remove duplicates sorted_urls = [] seen_titles = set() for url, metadata in sorted( self.url_metadata.items(), key=lambda x: (x[1]["importance"], x[0]), reverse=True, ): if metadata["title"] not in seen_titles: sorted_urls.append((url, metadata)) seen_titles.add(metadata["title"]) if not sorted_urls: return "No valid content was found" # Generate content content = [] # Find the best title for the main header (prefer "Welcome" or "Overview") main_title = "Welcome" # Default to Welcome # Find a good description for the blockquote best_description = None for _, metadata in sorted_urls: desc = self.clean_description(metadata["description"]) if desc and len(desc) > 20 and "null" not in desc.lower(): best_description = desc break content.append(f"# {main_title}") if best_description: content.append(f"\n> {best_description}") # Group by category categories = defaultdict(list) for url, metadata in sorted_urls: if metadata["title"] and url: categories[metadata["category"]].append((url, metadata)) # Add sections for category in ["Docs", "API", "Guides", "Examples", "Blog", "Optional"]: if category in categories: content.append(f"\n## {category}") # Add links without extra newlines links = [] for url, metadata in categories[category]: title = metadata["title"].strip() desc = self.clean_description(metadata["description"]) if desc: links.append(f"- [{title}]({url}): {desc}") else: links.append(f"- [{title}]({url})") content.append("\n".join(links)) return "\n".join(content) async def process_url(url, max_depth, max_pages): """Process URL and generate llms.txt""" try: # Add https:// if not present if not url.startswith(("http://", "https://")): url = "https://" + url # Validate URL result = urlparse(url) if not all([result.scheme, result.netloc]): return "", "Invalid URL format. Please enter a valid URL." # Process website crawler = WebsiteCrawler(max_depth=int(max_depth), max_pages=int(max_pages)) await crawler.crawl_website(url) content = crawler.generate_llms_txt() return content, f"Successfully crawled {len(crawler.visited_urls)} pages." except Exception as e: return "", f"Error: {str(e)}" # Create Gradio interface theme = gr.themes.Soft(primary_hue="blue", font="Open Sans") with gr.Blocks( theme=theme, css=""" @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600&display=swap'); .gradio-container { font-family: 'Open Sans', sans-serif !important; } .gr-button { font-family: 'Open Sans', sans-serif !important; font-weight: 600 !important; } .primary-btn { background-color: #2436d4 !important; color: white !important; } .primary-btn:hover { background-color: #1c2aa8 !important; } [data-testid="textbox"] { font-family: 'Open Sans', sans-serif !important; } .gr-padded { font-family: 'Open Sans', sans-serif !important; } .gr-input { font-family: 'Open Sans', sans-serif !important; } .gr-label { font-family: 'Open Sans', sans-serif !important; } """, ) as iface: gr.Markdown("# llms.txt Generator") gr.Markdown("Generate an llms.txt file from a website following the specification.") with gr.Row(): url_input = gr.Textbox( label="Website URL", placeholder="Enter the website URL (e.g., example.com)", info="The URL will be automatically prefixed with https:// if not provided", ) with gr.Row(): with gr.Column(): depth_input = gr.Slider( minimum=1, maximum=5, value=3, step=1, label="Maximum Crawl Depth" ) with gr.Column(): pages_input = gr.Slider( minimum=10, maximum=100, value=50, step=10, label="Maximum Pages" ) generate_btn = gr.Button("Generate llms.txt", variant="primary") output = gr.Textbox( label="Generated llms.txt Content", lines=20, show_copy_button=True, container=True, ) status = gr.Textbox(label="Status") generate_btn.click( fn=lambda url, depth, pages: asyncio.run(process_url(url, depth, pages)), inputs=[url_input, depth_input, pages_input], outputs=[output, status], ) if __name__ == "__main__": iface.launch()