import streamlit as st from meta_ai_api import MetaAI # Initialize Meta AI API ai = MetaAI() def fetch_response(query): response = ai.prompt(message=query) return response def display_sources(sources): st.write("### Sources") for source in sources: st.markdown(f"[{source['title']}]({source['link']})") def main(): st.title("AI Response Analytics Tool") # User input user_query = st.text_area("Enter your query:", height=150) submit_button = st.button("Analyze Query") if submit_button and user_query: # Fetching response from Meta AI response = fetch_response(user_query) st.write("### AI Response") st.write(response['message']) # Display sources with clickable links if 'sources' in response: display_sources(response['sources']) # Here you might add further analysis of the response, such as: # - Text analysis for sentiment # - Keyword extraction # - Length of the response # - Etc. # Optionally, save the query and response for historical analysis # Implement data storage if needed if __name__ == "__main__": main()