import streamlit as st from meta_ai_api import MetaAI from urllib.parse import urlparse import pandas as pd import plotly.express as px from nltk.sentiment.vader import SentimentIntensityAnalyzer import nltk import json # Initialize Meta AI API ai = MetaAI() PAGE_CONFIG = { "page_title": "Meta AI Query Analysis - a Free SEO Tool by WordLift", "page_icon": "img/fav-ico.png", "layout": "centered" } def local_css(file_name): with open(file_name) as f: st.markdown(f'', unsafe_allow_html=True) st.set_page_config(**PAGE_CONFIG) local_css("style.css") def fetch_response(query): response = ai.prompt(message=query) return response def display_sources(sources): if sources: for source in sources: # Parse the domain from the URL domain = urlparse(source['link']).netloc # Format and display the domain and title st.markdown(f"- **{domain}**: [{source['title']}]({source['link']})", unsafe_allow_html=True) else: st.write("No sources available.") # ---------------------------------------------------------------------------- # # Sentiment Analysis Function # ---------------------------------------------------------------------------- # # Download the VADER lexicon for sentiment analysis nltk.download('vader_lexicon') # Initialize the Sentiment Intensity Analyzer sid = SentimentIntensityAnalyzer() def sentiment_analysis(text): # Split the text into sentences sentences = [sentence.strip() for sentence in text.split('.') if sentence] # Create a DataFrame to hold the content and sentiment scores df = pd.DataFrame(sentences, columns=['content']) # Calculate sentiment scores for each sentence df['sentiment_scores'] = df['content'].apply(lambda x: sid.polarity_scores(x)) # Split sentiment_scores into separate columns df = pd.concat([df.drop(['sentiment_scores'], axis=1), df['sentiment_scores'].apply(pd.Series)], axis=1) # Determine the dominant sentiment and its confidence df['dominant_sentiment'] = df[['neg', 'neu', 'pos']].idxmax(axis=1) df['confidence'] = df[['neg', 'neu', 'pos']].max(axis=1) return df # ---------------------------------------------------------------------------- # # Advanced Analysis # ---------------------------------------------------------------------------- # def fetch_advanced_analysis(query, msg): analysis_prompt = f""" Analyze the user's request: '{query}', and the response: '{msg}'. Based on this analysis, generate a detailed JSON response including: 1. The user's intent, 2. Up to four follow-up questions, 3. The main entities mentioned in the response. Example of expected JSON format: {{ "user_intent": "Identify the effects of climate change on polar bears", "follow_up_questions": [ "What are the primary threats to polar bears today?", "How does the melting ice affect their habitat?", "What conservation efforts are in place for polar bears?", "How can individuals contribute to these efforts?" ], "entities": {{ "animal": ["polar bears"], "issue": ["climate change"], "actions": ["conservation efforts"] }} }} """ # Assume ai is an initialized MetaAI instance that can send prompts to the AI service advanced_response = ai.prompt(message=analysis_prompt) return advanced_response def parse_analysis(analysis_message): try: start = analysis_message.find('{') end = analysis_message.rfind('}') + 1 # Find the last '}' and include it if start != -1 and end != -1: json_str = analysis_message[start:end] print("Debug JSON String:", json_str) # Continue to use this for debugging analysis_data = json.loads(json_str) return analysis_data else: return {"error": "Valid JSON data not found in the response"} except json.JSONDecodeError as e: return {"error": "Failed to decode JSON", "details": str(e)} # ---------------------------------------------------------------------------- # # Main Function # ---------------------------------------------------------------------------- # def main(): # Path to the image image_path = 'img/meta-ai-logo.png' # Replace with your image's filename and extension # Create two columns col1, col2 = st.columns([1, 2]) # Adjust the ratio as needed for your layout # Use the first column to display the image with col1: st.image(image_path, width=60) # Use the second column to display the title and other content with col2: st.title("Meta AI SEO Tool") # User input user_query = st.text_area("Enter your query:", height=150) submit_button = st.button("Analyze Query") # Create tabs tab1, tab2, tab3 = st.tabs(["Overview", "Analysis", "Sentiment"]) # Tab 1: Overview - Showing the initial response and sources with tab1: user_query = st.text_area("Enter your query:", height=150, key="query_overview") submit_button = st.button("Analyze Query", key="submit_overview") if submit_button and user_query: response = fetch_response(user_query) msg = response.get('message', 'No response message.') st.write(msg) with st.expander("Show Sources"): display_sources(response.get('sources', [])) # Tab 2: Analysis - Showing the result of the advanced analysis with tab2: # In case you need inputs here as well, ensure they have unique keys if 'submit_overview' in st.session_state and st.session_state.submit_overview: advanced_response = fetch_advanced_analysis(st.session_state.query_overview, msg) advanced_msg = advanced_response.get('message', 'No advanced analysis available.') analysis_data = parse_analysis(advanced_msg) if "error" not in analysis_data: st.write("### User Intent") st.write(analysis_data['user_intent']) st.write("### Follow-up Questions") for question in analysis_data['follow_up_questions']: st.write("- " + question) st.write("### Identified Entities") for entity_type, entities in analysis_data['entities'].items(): st.write(f"**{entity_type.capitalize()}**: {', '.join(entities)}") # Tab 3: Sentiment - Displaying sentiment analysis of the response with tab3: if 'submit_overview' in st.session_state and st.session_state.submit_overview: df_sentiment = sentiment_analysis(msg) fig = px.scatter(df_sentiment, y='dominant_sentiment', color='dominant_sentiment', size='confidence', hover_data=['content'], color_discrete_map={"neg": "firebrick", "neu": "navajowhite", "pos": "darkgreen"}, labels={'dominant_sentiment': 'Sentiment'}, title='Sentiment Analysis of the Response') fig.update_layout(width=800, height=300) st.plotly_chart(fig) if __name__ == "__main__": main()