Spaces:
Paused
Paused
File size: 5,036 Bytes
60b53a6 6696db2 60b53a6 9787d82 6696db2 ea35578 2759f98 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 6696db2 4f04d17 6696db2 4f04d17 6696db2 60b53a6 892a160 60b53a6 1acabf9 60b53a6 1acabf9 60b53a6 892a160 6696db2 1acabf9 6696db2 60b53a6 892a160 1acabf9 9787d82 892a160 9787d82 892a160 1acabf9 9787d82 1acabf9 9787d82 60b53a6 5efe227 9787d82 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 6696db2 60b53a6 756f692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import matplotlib.pyplot as plt
import numpy as np
# Login to Hugging Face with token
login(token=os.environ["HF_TOKEN"])
# Liste des modèles
model_list = [
"meta-llama/Llama-2-13b",
"meta-llama/Llama-2-7b",
"meta-llama/Llama-2-70b",
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Llama-3.2-3B",
"meta-llama/Llama-3.1-8B",
"mistralai/Mistral-7B-v0.1",
"mistralai/Mixtral-8x7B-v0.1",
"mistralai/Mistral-7B-v0.3",
"google/gemma-2-2b",
"google/gemma-2-9b",
"google/gemma-2-27b",
"croissantllm/CroissantLLMBase"
]
# Charger le modèle et le tokenizer
model = None
tokenizer = None
def load_model(model_name):
global model, tokenizer
print(f"Chargement du modèle {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16, attn_implementation="eager")
print("Modèle chargé avec succès.")
return f"Modèle {model_name} chargé."
def plot_attention(attention_data):
tokens = attention_data['tokens']
attention = attention_data['attention']
fig, ax = plt.subplots(figsize=(10, 10))
cax = ax.matshow(attention, cmap='viridis')
fig.colorbar(cax)
ax.set_xticklabels([''] + tokens, rotation=90)
ax.set_yticklabels([''] + tokens)
plt.xlabel("Tokens")
plt.ylabel("Tokens")
plt.title("Attention Heatmap")
plt.tight_layout()
plt.savefig('attention_plot.png')
return 'attention_plot.png'
def plot_probabilities(prob_data):
words, probs = zip(*prob_data.items())
plt.figure(figsize=(6, 4))
plt.barh(words, probs, color='skyblue')
plt.xlabel('Probabilities')
plt.title('Top Probable Words')
plt.tight_layout()
plt.savefig('probabilities_plot.png')
return 'probabilities_plot.png'
def generate_text(input_text, temperature, top_p, top_k):
global model, tokenizer
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
temperature=temperature,
top_p=top_p,
top_k=top_k,
output_scores=True,
output_attentions=True,
return_dict_in_generate=True,
return_legacy_cache=True
)
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Logits et probabilités du dernier token généré
last_token_logits = outputs.scores[-1][0]
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
# Top 5 des mots les plus probables
top_probs, top_indices = torch.topk(probabilities, 5)
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
# Extraction des attentions
attentions = torch.cat([att[-1].mean(dim=1) for att in outputs.attentions], dim=0).cpu().numpy()
attention_data = {
'attention': attentions,
'tokens': tokenizer.convert_ids_to_tokens(outputs.sequences[0])
}
return generated_text, plot_attention(attention_data), plot_probabilities(prob_data)
def reset_app():
global model, tokenizer
model = None
tokenizer = None
return "Application réinitialisée."
# Interface utilisateur Gradio
with gr.Blocks() as demo:
with gr.Row():
model_selection = gr.Accordion("Sélection du modèle", open=True)
with model_selection:
model_name = gr.Dropdown(choices=model_list, label="Choisir un modèle", value=model_list[0])
load_model_button = gr.Button("Charger le modèle")
load_status = gr.Textbox(label="Statut du modèle", interactive=False)
with gr.Row():
temperature = gr.Slider(0.0, 1.0, value=0.7, label="Température")
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top-p")
top_k = gr.Slider(1, 100, value=50, label="Top-k")
with gr.Row():
input_text = gr.Textbox(label="Entrer le texte")
generate_button = gr.Button("Générer")
with gr.Row():
output_text = gr.Textbox(label="Texte généré", interactive=False)
with gr.Row():
attention_plot = gr.Image(label="Carte de chaleur des attentions")
prob_plot = gr.Image(label="Probabilités des mots les plus probables")
with gr.Row():
reset_button = gr.Button("Réinitialiser l'application")
load_model_button.click(load_model, inputs=[model_name], outputs=[load_status])
generate_button.click(generate_text, inputs=[input_text, temperature, top_p, top_k], outputs=[output_text, attention_plot, prob_plot])
reset_button.click(reset_app)
demo.launch() |