Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,10 @@ import os
|
|
9 |
# Login to Hugging Face with token
|
10 |
login(token=os.environ["HF_TOKEN"])
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
"meta-llama/Llama-2-
|
15 |
-
"meta-llama/Llama-2-
|
16 |
-
"meta-llama/Llama-2-70b",
|
17 |
"meta-llama/Meta-Llama-3-8B",
|
18 |
"meta-llama/Llama-3.2-3B",
|
19 |
"meta-llama/Llama-3.1-8B",
|
@@ -26,126 +25,66 @@ model_list = [
|
|
26 |
"croissantllm/CroissantLLMBase"
|
27 |
]
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
tokenizer = None
|
32 |
|
|
|
33 |
def load_model(model_name):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
print("Modèle chargé avec succès.")
|
41 |
-
return f"Modèle {model_name} chargé."
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
fig, ax = plt.subplots(figsize=(10, 10))
|
48 |
-
cax = ax.matshow(attention, cmap='viridis')
|
49 |
-
fig.colorbar(cax)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
plt.title("Attention Heatmap")
|
57 |
-
|
58 |
-
plt.tight_layout()
|
59 |
-
plt.savefig('attention_plot.png')
|
60 |
-
return 'attention_plot.png'
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
plt.figure(figsize=(6, 4))
|
66 |
-
plt.barh(words, probs, color='skyblue')
|
67 |
-
plt.xlabel('Probabilities')
|
68 |
-
plt.title('Top Probable Words')
|
69 |
-
|
70 |
-
plt.tight_layout()
|
71 |
-
plt.savefig('probabilities_plot.png')
|
72 |
-
return 'probabilities_plot.png'
|
73 |
-
|
74 |
-
def generate_text(input_text, temperature, top_p, top_k):
|
75 |
-
global model, tokenizer
|
76 |
-
|
77 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
78 |
-
|
79 |
-
with torch.no_grad():
|
80 |
-
outputs = model.generate(
|
81 |
-
**inputs,
|
82 |
-
max_new_tokens=50,
|
83 |
-
temperature=temperature,
|
84 |
-
top_p=top_p,
|
85 |
-
top_k=top_k,
|
86 |
-
output_scores=True,
|
87 |
-
output_attentions=True,
|
88 |
-
return_dict_in_generate=True,
|
89 |
-
return_legacy_cache=True
|
90 |
-
)
|
91 |
-
|
92 |
-
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
93 |
-
|
94 |
-
# Logits et probabilités du dernier token généré
|
95 |
-
last_token_logits = outputs.scores[-1][0]
|
96 |
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
97 |
-
|
98 |
-
|
99 |
-
top_probs, top_indices = torch.topk(probabilities, 5)
|
100 |
-
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
|
101 |
-
|
102 |
-
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
103 |
-
|
104 |
-
# Extraction des attentions
|
105 |
-
attentions = torch.cat([att[-1].mean(dim=1) for att in outputs.attentions], dim=0).cpu().numpy()
|
106 |
-
attention_data = {
|
107 |
-
'attention': attentions,
|
108 |
-
'tokens': tokenizer.convert_ids_to_tokens(outputs.sequences[0])
|
109 |
-
}
|
110 |
-
|
111 |
-
return generated_text, plot_attention(attention_data), plot_probabilities(prob_data)
|
112 |
|
113 |
-
|
114 |
-
global model, tokenizer
|
115 |
-
model = None
|
116 |
-
tokenizer = None
|
117 |
-
return "Application réinitialisée."
|
118 |
|
119 |
# Interface utilisateur Gradio
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
reset_button.click(reset_app)
|
150 |
|
151 |
-
|
|
|
|
9 |
# Login to Hugging Face with token
|
10 |
login(token=os.environ["HF_TOKEN"])
|
11 |
|
12 |
+
MODEL_LIST = [
|
13 |
+
"meta-llama/Llama-2-13b-hf",
|
14 |
+
"meta-llama/Llama-2-7b-hf",
|
15 |
+
"meta-llama/Llama-2-70b-hf",
|
|
|
16 |
"meta-llama/Meta-Llama-3-8B",
|
17 |
"meta-llama/Llama-3.2-3B",
|
18 |
"meta-llama/Llama-3.1-8B",
|
|
|
25 |
"croissantllm/CroissantLLMBase"
|
26 |
]
|
27 |
|
28 |
+
# Dictionnaire pour stocker les modèles et tokenizers déjà chargés
|
29 |
+
loaded_models = {}
|
|
|
30 |
|
31 |
+
# Charger le modèle
|
32 |
def load_model(model_name):
|
33 |
+
if model_name not in loaded_models:
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
36 |
+
loaded_models[model_name] = (model, tokenizer)
|
37 |
+
return loaded_models[model_name]
|
|
|
|
|
|
|
38 |
|
39 |
+
# Génération de texte et attention
|
40 |
+
def generate_text(model_name, input_text, temperature, top_p, top_k):
|
41 |
+
model, tokenizer = load_model(model_name)
|
42 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
|
|
|
43 |
|
44 |
+
# Génération du texte
|
45 |
+
output = model.generate(**inputs, max_new_tokens=50, temperature=temperature, top_p=top_p, top_k=top_k, output_attentions=True)
|
46 |
|
47 |
+
# Décodage de la sortie
|
48 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Affichage des mots les plus probables
|
51 |
+
last_token_logits = output.scores[-1][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
53 |
+
top_tokens = torch.topk(probabilities, k=5)
|
54 |
+
probable_words = [tokenizer.decode([token]) for token in top_tokens.indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
return generated_text, probable_words
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Interface utilisateur Gradio
|
59 |
+
def reset_interface():
|
60 |
+
return "", "", "", ""
|
61 |
+
|
62 |
+
def main():
|
63 |
+
with gr.Blocks() as app:
|
64 |
+
with gr.Accordion("Choix du modèle", open=True):
|
65 |
+
model_name = gr.Dropdown(choices=MODEL_LIST, label="Modèles disponibles", value=MODEL_LIST[0])
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
input_text = gr.Textbox(label="Texte d'entrée", placeholder="Saisissez votre texte ici...")
|
69 |
+
|
70 |
+
with gr.Accordion("Paramètres", open=True):
|
71 |
+
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.01, label="Température")
|
72 |
+
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.01, label="Top_p")
|
73 |
+
top_k = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top_k")
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
generate_button = gr.Button("Lancer la génération")
|
77 |
+
reset_button = gr.Button("Réinitialiser")
|
78 |
+
|
79 |
+
generated_text_output = gr.Textbox(label="Texte généré", placeholder="Le texte généré s'affichera ici...")
|
80 |
+
probable_words_output = gr.Textbox(label="Mots les plus probables", placeholder="Les mots les plus probables apparaîtront ici...")
|
81 |
+
|
82 |
+
# Lancer la génération
|
83 |
+
generate_button.click(generate_text, inputs=[model_name, input_text, temperature, top_p, top_k], outputs=[generated_text_output, probable_words_output])
|
84 |
+
# Réinitialiser
|
85 |
+
reset_button.click(reset_interface, outputs=[input_text, generated_text_output, probable_words_output])
|
86 |
+
|
87 |
+
app.launch()
|
|
|
88 |
|
89 |
+
if __name__ == "__main__":
|
90 |
+
main()
|