Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -62,17 +62,18 @@ def analyze_next_token(input_text, temperature, top_p, top_k):
|
|
62 |
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
63 |
top_k = 5
|
64 |
top_probs, top_indices = torch.topk(probabilities, top_k)
|
65 |
-
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
|
66 |
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
67 |
prob_plot = plot_probabilities(prob_data)
|
68 |
|
|
|
|
|
|
|
|
|
69 |
if hasattr(outputs, 'attentions') and outputs.attentions is not None:
|
70 |
-
|
71 |
-
attention_plot = plot_attention(attention_data, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]))
|
72 |
-
else:
|
73 |
-
attention_plot = None
|
74 |
|
75 |
-
return
|
76 |
except Exception as e:
|
77 |
return f"Erreur lors de l'analyse : {str(e)}", None, None
|
78 |
|
@@ -88,29 +89,19 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
88 |
with torch.no_grad():
|
89 |
outputs = model.generate(
|
90 |
**inputs,
|
91 |
-
max_new_tokens=
|
92 |
temperature=temperature,
|
93 |
top_p=top_p,
|
94 |
top_k=top_k
|
95 |
)
|
96 |
|
97 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
98 |
-
|
|
|
|
|
99 |
except Exception as e:
|
100 |
return f"Erreur lors de la génération : {str(e)}"
|
101 |
|
102 |
-
def plot_attention(attention, tokens):
|
103 |
-
fig, ax = plt.subplots(figsize=(10, 10))
|
104 |
-
im = ax.imshow(attention, cmap='viridis')
|
105 |
-
ax.set_xticks(range(len(tokens)))
|
106 |
-
ax.set_yticks(range(len(tokens)))
|
107 |
-
ax.set_xticklabels(tokens, rotation=90)
|
108 |
-
ax.set_yticklabels(tokens)
|
109 |
-
plt.colorbar(im)
|
110 |
-
plt.title("Carte d'attention")
|
111 |
-
plt.tight_layout()
|
112 |
-
return fig
|
113 |
-
|
114 |
def plot_probabilities(prob_data):
|
115 |
words = list(prob_data.keys())
|
116 |
probs = list(prob_data.values())
|
@@ -145,27 +136,26 @@ with gr.Blocks() as demo:
|
|
145 |
|
146 |
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
|
147 |
analyze_button = gr.Button("Analyser le prochain token")
|
148 |
-
generate_button = gr.Button("Générer la suite du texte")
|
149 |
|
150 |
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
|
|
|
151 |
|
152 |
-
|
153 |
-
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
154 |
-
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
155 |
|
156 |
-
|
|
|
157 |
|
158 |
reset_button = gr.Button("Réinitialiser")
|
159 |
|
160 |
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
161 |
analyze_button.click(analyze_next_token,
|
162 |
inputs=[input_text, temperature, top_p, top_k],
|
163 |
-
outputs=[next_token_probs,
|
164 |
generate_button.click(generate_text,
|
165 |
inputs=[input_text, temperature, top_p, top_k],
|
166 |
-
outputs=[
|
167 |
reset_button.click(reset,
|
168 |
-
outputs=[input_text, temperature, top_p, top_k, next_token_probs,
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
demo.launch()
|
|
|
62 |
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
63 |
top_k = 5
|
64 |
top_probs, top_indices = torch.topk(probabilities, top_k)
|
65 |
+
top_words = [tokenizer.decode([idx.item()]).strip() for idx in top_indices]
|
66 |
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
67 |
prob_plot = plot_probabilities(prob_data)
|
68 |
|
69 |
+
prob_text = "\n".join([f"{word}: {prob:.4f}" for word, prob in prob_data.items()])
|
70 |
+
|
71 |
+
# Simplification de l'affichage de l'attention
|
72 |
+
attention_text = "Attention non disponible pour ce modèle"
|
73 |
if hasattr(outputs, 'attentions') and outputs.attentions is not None:
|
74 |
+
attention_text = "Attention disponible"
|
|
|
|
|
|
|
75 |
|
76 |
+
return prob_text, attention_text, prob_plot
|
77 |
except Exception as e:
|
78 |
return f"Erreur lors de l'analyse : {str(e)}", None, None
|
79 |
|
|
|
89 |
with torch.no_grad():
|
90 |
outputs = model.generate(
|
91 |
**inputs,
|
92 |
+
max_new_tokens=1, # Génère seulement le prochain mot
|
93 |
temperature=temperature,
|
94 |
top_p=top_p,
|
95 |
top_k=top_k
|
96 |
)
|
97 |
|
98 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
99 |
+
# Ne retourne que le nouveau mot généré
|
100 |
+
new_word = generated_text[len(input_text):].strip()
|
101 |
+
return new_word
|
102 |
except Exception as e:
|
103 |
return f"Erreur lors de la génération : {str(e)}"
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
def plot_probabilities(prob_data):
|
106 |
words = list(prob_data.keys())
|
107 |
probs = list(prob_data.values())
|
|
|
136 |
|
137 |
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
|
138 |
analyze_button = gr.Button("Analyser le prochain token")
|
|
|
139 |
|
140 |
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
|
141 |
+
attention_info = gr.Textbox(label="Information sur l'attention")
|
142 |
|
143 |
+
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
|
|
|
|
144 |
|
145 |
+
generate_button = gr.Button("Générer le prochain mot")
|
146 |
+
generated_word = gr.Textbox(label="Mot généré")
|
147 |
|
148 |
reset_button = gr.Button("Réinitialiser")
|
149 |
|
150 |
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
151 |
analyze_button.click(analyze_next_token,
|
152 |
inputs=[input_text, temperature, top_p, top_k],
|
153 |
+
outputs=[next_token_probs, attention_info, prob_plot])
|
154 |
generate_button.click(generate_text,
|
155 |
inputs=[input_text, temperature, top_p, top_k],
|
156 |
+
outputs=[generated_word])
|
157 |
reset_button.click(reset,
|
158 |
+
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_info, prob_plot, generated_word])
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
demo.launch()
|