Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -32,48 +32,68 @@ tokenizer = None
|
|
32 |
|
33 |
def load_model(model_name):
|
34 |
global model, tokenizer
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
tokenizer.pad_token
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
def generate_text(input_text, temperature, top_p, top_k):
|
42 |
global model, tokenizer
|
43 |
|
|
|
|
|
|
|
44 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def plot_attention(attention, tokens):
|
79 |
fig, ax = plt.subplots(figsize=(10, 10))
|
@@ -101,6 +121,9 @@ def plot_probabilities(prob_data):
|
|
101 |
return fig
|
102 |
|
103 |
def reset():
|
|
|
|
|
|
|
104 |
return "", 1.0, 1.0, 50, None, None, None
|
105 |
|
106 |
with gr.Blocks() as demo:
|
|
|
32 |
|
33 |
def load_model(model_name):
|
34 |
global model, tokenizer
|
35 |
+
try:
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="eager")
|
38 |
+
if tokenizer.pad_token is None:
|
39 |
+
tokenizer.pad_token = tokenizer.eos_token
|
40 |
+
return f"Modèle {model_name} chargé avec succès."
|
41 |
+
except Exception as e:
|
42 |
+
return f"Erreur lors du chargement du modèle : {str(e)}"
|
43 |
|
44 |
def generate_text(input_text, temperature, top_p, top_k):
|
45 |
global model, tokenizer
|
46 |
|
47 |
+
if model is None or tokenizer is None:
|
48 |
+
return "Veuillez d'abord charger un modèle.", None, None
|
49 |
+
|
50 |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
51 |
|
52 |
+
try:
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = model.generate(
|
55 |
+
**inputs,
|
56 |
+
max_new_tokens=50,
|
57 |
+
temperature=temperature,
|
58 |
+
top_p=top_p,
|
59 |
+
top_k=top_k,
|
60 |
+
output_attentions=True,
|
61 |
+
return_dict_in_generate=True,
|
62 |
+
output_scores=True
|
63 |
+
)
|
64 |
+
|
65 |
+
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
66 |
+
|
67 |
+
# Obtenir les logits pour le dernier token généré
|
68 |
+
if outputs.scores:
|
69 |
+
last_token_logits = outputs.scores[-1][0]
|
70 |
+
|
71 |
+
# Appliquer softmax pour obtenir les probabilités
|
72 |
+
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
73 |
+
|
74 |
+
# Obtenir les top 5 tokens les plus probables
|
75 |
+
top_k = 5
|
76 |
+
top_probs, top_indices = torch.topk(probabilities, top_k)
|
77 |
+
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
|
78 |
+
|
79 |
+
# Préparer les données pour le graphique des probabilités
|
80 |
+
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
81 |
+
|
82 |
+
# Extraire les attentions (moyenne sur toutes les couches et têtes d'attention)
|
83 |
+
if outputs.attentions:
|
84 |
+
attentions = torch.mean(torch.stack(outputs.attentions), dim=(0, 1)).cpu().numpy()
|
85 |
+
attention_plot = plot_attention(attentions, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]))
|
86 |
+
else:
|
87 |
+
attention_plot = None
|
88 |
+
|
89 |
+
prob_plot = plot_probabilities(prob_data)
|
90 |
+
else:
|
91 |
+
attention_plot = None
|
92 |
+
prob_plot = None
|
93 |
+
|
94 |
+
return generated_text, attention_plot, prob_plot
|
95 |
+
except Exception as e:
|
96 |
+
return f"Erreur lors de la génération : {str(e)}", None, None
|
97 |
|
98 |
def plot_attention(attention, tokens):
|
99 |
fig, ax = plt.subplots(figsize=(10, 10))
|
|
|
121 |
return fig
|
122 |
|
123 |
def reset():
|
124 |
+
global model, tokenizer
|
125 |
+
model = None
|
126 |
+
tokenizer = None
|
127 |
return "", 1.0, 1.0, 50, None, None, None
|
128 |
|
129 |
with gr.Blocks() as demo:
|