import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import login import os import matplotlib.pyplot as plt import numpy as np # Authentification login(token=os.environ["HF_TOKEN"]) # Liste des modèles models = [ "meta-llama/Llama-2-13b-hf", "meta-llama/Llama-2-7b-hf", "meta-llama/Llama-2-70b-hf", "meta-llama/Meta-Llama-3-8B", "meta-llama/Llama-3.2-3B", "meta-llama/Llama-3.1-8B", "mistralai/Mistral-7B-v0.1", "mistralai/Mixtral-8x7B-v0.1", "mistralai/Mistral-7B-v0.3", "google/gemma-2-2b", "google/gemma-2-9b", "google/gemma-2-27b", "croissantllm/CroissantLLMBase" ] # Variables globales model = None tokenizer = None def load_model(model_name): global model, tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token return f"Modèle {model_name} chargé avec succès." def generate_text(input_text, temperature, top_p, top_k): global model, tokenizer inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=50, temperature=temperature, top_p=top_p, top_k=top_k, output_attentions=True, return_dict_in_generate=True ) generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) # Obtenir les logits pour le dernier token généré last_token_logits = outputs.scores[-1][0] # Appliquer softmax pour obtenir les probabilités probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1) # Obtenir les top 5 tokens les plus probables top_k = 5 top_probs, top_indices = torch.topk(probabilities, top_k) top_words = [tokenizer.decode([idx.item()]) for idx in top_indices] # Préparer les données pour le graphique des probabilités prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)} # Extraire les attentions (moyenne sur toutes les couches et têtes d'attention) attentions = torch.mean(torch.stack(outputs.attentions), dim=(0, 1)).cpu().numpy() return generated_text, plot_attention(attentions, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])), plot_probabilities(prob_data) def plot_attention(attention, tokens): fig, ax = plt.subplots(figsize=(10, 10)) im = ax.imshow(attention, cmap='viridis') ax.set_xticks(range(len(tokens))) ax.set_yticks(range(len(tokens))) ax.set_xticklabels(tokens, rotation=90) ax.set_yticklabels(tokens) plt.colorbar(im) plt.title("Carte d'attention") plt.tight_layout() return fig def plot_probabilities(prob_data): words = list(prob_data.keys()) probs = list(prob_data.values()) fig, ax = plt.subplots(figsize=(10, 5)) ax.bar(words, probs) ax.set_title("Probabilités des tokens suivants les plus probables") ax.set_xlabel("Tokens") ax.set_ylabel("Probabilité") plt.xticks(rotation=45) plt.tight_layout() return fig def reset(): return "", 1.0, 1.0, 50, None, None, None with gr.Blocks() as demo: gr.Markdown("# Générateur de texte avec visualisation d'attention") with gr.Accordion("Sélection du modèle"): model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle") load_button = gr.Button("Charger le modèle") load_output = gr.Textbox(label="Statut du chargement") with gr.Row(): temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température") top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p") top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k") input_text = gr.Textbox(label="Texte d'entrée") generate_button = gr.Button("Générer") output_text = gr.Textbox(label="Texte généré") with gr.Row(): attention_plot = gr.Plot(label="Visualisation de l'attention") prob_plot = gr.Plot(label="Probabilités des tokens suivants") reset_button = gr.Button("Réinitialiser") load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output]) generate_button.click(generate_text, inputs=[input_text, temperature, top_p, top_k], outputs=[output_text, attention_plot, prob_plot]) reset_button.click(reset, outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, prob_plot]) demo.launch()