File size: 19,296 Bytes
37aeb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from typing import List
import torch
import numpy as np
from PIL import Image
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
    RasterizationSettings,
    TexturesVertex,
    FoVPerspectiveCameras,
    FoVOrthographicCameras,
)
from pytorch3d.renderer import MeshRasterizer

def get_camera(world_to_cam, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'):
    # pytorch3d expects transforms as row-vectors, so flip rotation: https://github.com/facebookresearch/pytorch3d/issues/1183
    R = world_to_cam[:3, :3].t()[None, ...]
    T = world_to_cam[:3, 3][None, ...]
    if cam_type == 'fov':
        camera = FoVPerspectiveCameras(device=world_to_cam.device, R=R, T=T, fov=fov_in_degrees, degrees=True)
    else:
        focal_length = 1 / focal_length
        camera = FoVOrthographicCameras(device=world_to_cam.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length)
    return camera

def render_pix2faces_py3d(meshes, cameras, H=512, W=512, blur_radius=0.0, faces_per_pixel=1):
    """
    Renders pix2face of visible faces.

    :param mesh: Pytorch3d.structures.Meshes
    :param cameras: pytorch3d.renderer.Cameras
    :param H: target image height
    :param W: target image width
    :param blur_radius: Float distance in the range [0, 2] used to expand the face
            bounding boxes for rasterization. Setting blur radius
            results in blurred edges around the shape instead of a
            hard boundary. Set to 0 for no blur.
    :param faces_per_pixel: (int) Number of faces to keep track of per pixel.
            We return the nearest faces_per_pixel faces along the z-axis.
    """
    # Define the settings for rasterization and shading
    raster_settings = RasterizationSettings(
        image_size=(H, W),
        blur_radius=blur_radius,
        faces_per_pixel=faces_per_pixel
    )
    rasterizer=MeshRasterizer(
        cameras=cameras, 
        raster_settings=raster_settings
    )
    fragments: Fragments = rasterizer(meshes, cameras=cameras)
    return {
        "pix_to_face": fragments.pix_to_face[..., 0],
    }

import nvdiffrast.torch as dr

def _warmup(glctx, device=None):
    device = 'cuda' if device is None else device
    #windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
    def tensor(*args, **kwargs):
        return torch.tensor(*args, device=device, **kwargs)
    pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
    tri = tensor([[0, 1, 2]], dtype=torch.int32)
    dr.rasterize(glctx, pos, tri, resolution=[256, 256])

class Pix2FacesRenderer:
    def __init__(self, device="cuda"):
        self._glctx = dr.RasterizeGLContext(output_db=False, device=device)
        self.device = device
        _warmup(self._glctx, device)

    def transform_vertices(self, meshes: Meshes, cameras: CamerasBase):
        vertices = cameras.transform_points_ndc(meshes.verts_padded())

        perspective_correct = cameras.is_perspective()
        znear = cameras.get_znear()
        if isinstance(znear, torch.Tensor):
            znear = znear.min().item()
        z_clip = None if not perspective_correct or znear is None else znear / 2

        if z_clip:
            vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None]    # clip
        vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices)
        vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32)
        return vertices

    def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512):
        meshes = meshes.to(self.device)
        cameras = cameras.to(self.device)
        vertices = self.transform_vertices(meshes, cameras)
        faces = meshes.faces_packed().to(torch.int32)
        rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) #C,H,W,4
        pix_to_face = rast_out[..., -1].to(torch.int32) - 1
        return pix_to_face

pix2faces_renderer = Pix2FacesRenderer()

def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024):
    # pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face']
    pix_to_face = pix2faces_renderer.render_pix2faces_nvdiff(meshes, cameras, H=resolution, W=resolution)

    unique_faces = torch.unique(pix_to_face.flatten())
    unique_faces = unique_faces[unique_faces != -1]
    return unique_faces

def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict:
    """
    Projects color from a given image onto a 3D mesh.

    Args:
        meshes (pytorch3d.structures.Meshes): The 3D mesh object.
        cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object.
        pil_image (PIL.Image.Image): The input image.
        use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
        eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
        resolution (int, optional): The resolution of the projection. Defaults to 1024.
        device (str, optional): The device to use for computation. Defaults to "cuda".
        debug (bool, optional): Whether to save debug images. Defaults to False.

    Returns:
        dict: A dictionary containing the following keys:
            - "new_texture" (TexturesVertex): The updated texture with interpolated colors.
            - "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected.
            - "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices.
    """
    meshes = meshes.to(device)
    cameras = cameras.to(device)
    image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device)     # in CHW format of [0, 1.]
    unique_faces = get_visible_faces(meshes, cameras, resolution=resolution)

    # visible faces
    faces_normals = meshes.faces_normals_packed()[unique_faces]
    faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True)
    world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0]
    view_direction = world_points[1] - world_points[0]
    view_direction = view_direction / view_direction.norm(dim=0, keepdim=True)

    # find invalid faces
    cos_angles = (faces_normals * view_direction).sum(dim=1)
    assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}"
    selected_faces = unique_faces[cos_angles < -eps]

    # find verts
    faces = meshes.faces_packed()[selected_faces]   # [N, 3]
    verts = torch.unique(faces.flatten())   # [N, 1]
    verts_coordinates = meshes.verts_packed()[verts]   # [N, 3]

    # compute color
    pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] # NDC space points
    valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1))  # checked, correct
    valid_pt = pt_tensor[valid, :]
    valid_idx = verts[valid]
    valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1)   # [N, 4], note that bicubic may give invalid value
    alpha, valid_color = valid_color[:, 3:], valid_color[:, :3]
    if not use_alpha:
        alpha = torch.ones_like(alpha)

    # modify color
    old_colors = meshes.textures.verts_features_packed()
    old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha)
    new_texture = TexturesVertex(verts_features=[old_colors])
    
    valid_verts_normals = meshes.verts_normals_packed()[valid_idx]
    valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001)
    cos_angles = (valid_verts_normals * view_direction).sum(dim=1)
    return {
        "new_texture": new_texture,
        "valid_verts": valid_idx,
        "valid_colors": valid_color,
        "valid_alpha": alpha,
        "cos_angles": cos_angles,
    }

def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict:
    """
    meshes: the mesh with vertex color to be completed.
    valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1]
    """
    valid_index = valid_index.to(meshes.device)
    colors = meshes.textures.verts_features_packed()    # [V, 3]
    V = colors.shape[0]
    
    invalid_index = torch.ones_like(colors[:, 0]).bool()    # [V]
    invalid_index[valid_index] = False
    invalid_index = torch.arange(V).to(meshes.device)[invalid_index]
    
    L = meshes.laplacian_packed()
    E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device)
    L = L + E
    # E = torch.eye(V, layout=torch.sparse_coo, device=meshes.device)
    # L = L + E
    colored_count = torch.ones_like(colors[:, 0])   # [V]
    colored_count[invalid_index] = 0
    L_invalid = torch.index_select(L, 0, invalid_index)    # sparse [IV, V]
    
    total_colored = colored_count.sum()
    coloring_round = 0
    stage = "uncolored"
    from tqdm import tqdm
    pbar = tqdm(miniters=100)
    while stage == "uncolored" or coloring_round > 0:
        new_color = torch.matmul(L_invalid, colors * colored_count[:, None])    # [IV, 3]
        new_count = torch.matmul(L_invalid, colored_count)[:, None]             # [IV, 1]
        colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index])
        colored_count[invalid_index] = (new_count[:, 0] > 0).float()
        
        new_total_colored = colored_count.sum()
        if new_total_colored > total_colored:
            total_colored = new_total_colored
            coloring_round += 1
        else:
            stage = "colored"
            coloring_round -= 1
        pbar.update(1)
        if coloring_round > 10000:
            print("coloring_round > 10000, break")
            break
    assert not torch.isnan(colors).any()
    meshes.textures = TexturesVertex(verts_features=[colors])
    return meshes

def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth") -> Meshes:
    """
    Projects color from a given image onto a 3D mesh.

    Args:
        meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh.
        image_list (PIL.Image.Image): List of images.
        cameras_list (list): List of cameras.
        camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35.
        weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None.
        eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
        resolution (int, optional): The resolution of the projection. Defaults to 1024.
        device (str, optional): The device to use for computation. Defaults to "cuda".
        reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None.
        use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
        confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1.
        complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False.

    Returns:
        Meshes: the colored mesh
    """
    # 1. preprocess inputs
    if image_list is None:
        raise ValueError("image_list is None")
    if cameras_list is None:
        if len(image_list) == 8:
            cameras_list = get_8view_cameras(device, focal=camera_focal)
        elif len(image_list) == 6:
            cameras_list = get_6view_cameras(device, focal=camera_focal)
        elif len(image_list) == 4:
            cameras_list = get_4view_cameras(device, focal=camera_focal)
        elif len(image_list) == 2:
            cameras_list = get_2view_cameras(device, focal=camera_focal)
        else:
            raise ValueError("cameras_list is None, and can not be guessed from image_list")
    if weights is None:
        if len(image_list) == 8:
            weights = [2.0, 0.05, 0.2, 0.02, 1.0, 0.02, 0.2, 0.05]
        elif len(image_list) == 6:
            weights = [2.0, 0.05, 0.2, 1.0, 0.2, 0.05]
        elif len(image_list) == 4:
            weights = [2.0, 0.2, 1.0, 0.2]
        elif len(image_list) == 2:
            weights = [1.0, 1.0]
        else:
            raise ValueError("weights is None, and can not be guessed from image_list")
    
    # 2. run projection
    meshes = meshes.clone().to(device)
    if weights is None:
        weights = [1. for _ in range(len(cameras_list))]
    assert len(cameras_list) == len(image_list) == len(weights)
    original_color = meshes.textures.verts_features_packed()
    assert not torch.isnan(original_color).any()
    texture_counts = torch.zeros_like(original_color[..., :1])
    texture_values = torch.zeros_like(original_color)
    max_texture_counts = torch.zeros_like(original_color[..., :1])
    max_texture_values = torch.zeros_like(original_color)
    for camera, image, weight in zip(cameras_list, image_list, weights):
        ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha)
        if reweight_with_cosangle == "linear":
            weight = (ret['cos_angles'].abs() * weight)[:, None]
        elif reweight_with_cosangle == "square":
            weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None]
        if use_alpha:
            weight = weight * ret['valid_alpha']
        assert weight.min() > -0.0001
        texture_counts[ret['valid_verts']] += weight
        texture_values[ret['valid_verts']] += ret['valid_colors'] * weight
        max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']])
        max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight)

    # Method2
    texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values)
    if below_confidence_strategy == "smooth":
        texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values)
    elif below_confidence_strategy == "original":
        texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values)
    else:
        raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported")
    assert not torch.isnan(texture_values).any()
    meshes.textures = TexturesVertex(verts_features=[texture_values])
    
    if complete_unseen:
        meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold])
    ret_mesh = meshes.detach()
    del meshes
    return ret_mesh

def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1):
    ret = []
    for azim in azim_list:
        R, T = look_at_view_transform(dist, 0, azim)
        w2c = torch.cat([R[0].T, T[0, :, None]], dim=1)
        cameras: OrthographicCameras = get_camera(w2c, focal_length=focal, cam_type='orthogonal').to(device)
        ret.append(cameras)
    return ret

def get_8view_cameras(device, focal=2/1.35):
    return get_cameras_list(azim_list = [180, 225, 270, 315, 0, 45, 90, 135], device=device, focal=focal)

def get_6view_cameras(device, focal=2/1.35):
    return get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=device, focal=focal)

def get_4view_cameras(device, focal=2/1.35):
    return get_cameras_list(azim_list = [180, 270, 0, 90], device=device, focal=focal)

def get_2view_cameras(device, focal=2/1.35):
    return get_cameras_list(azim_list = [180, 0], device=device, focal=focal)

def get_multiple_view_cameras(device, focal=2/1.35, offset=180, num_views=8, dist=1.1):
    return get_cameras_list(azim_list = (np.linspace(0, 360, num_views+1)[:-1] + offset) % 360, device=device, focal=focal, dist=dist)

def align_with_alpha_bbox(source_img, target_img, final_size=1024):
    # align source_img with target_img using alpha channel
    # source_img and target_img are PIL.Image.Image
    source_img = source_img.convert("RGBA")
    target_img = target_img.convert("RGBA").resize((final_size, final_size))
    source_np = np.array(source_img)
    target_np = np.array(target_img)
    source_alpha = source_np[:, :, 3]
    target_alpha = target_np[:, :, 3]
    bbox_source_min, bbox_source_max = np.argwhere(source_alpha > 0).min(axis=0), np.argwhere(source_alpha > 0).max(axis=0)
    bbox_target_min, bbox_target_max = np.argwhere(target_alpha > 0).min(axis=0), np.argwhere(target_alpha > 0).max(axis=0)
    source_content = source_np[bbox_source_min[0]:bbox_source_max[0]+1, bbox_source_min[1]:bbox_source_max[1]+1, :]
    # resize source_content to fit in the position of target_content
    source_content = Image.fromarray(source_content).resize((bbox_target_max[1]-bbox_target_min[1]+1, bbox_target_max[0]-bbox_target_min[0]+1), resample=Image.BICUBIC)
    target_np[bbox_target_min[0]:bbox_target_max[0]+1, bbox_target_min[1]:bbox_target_max[1]+1, :] = np.array(source_content)
    return Image.fromarray(target_np)
    
def load_image_list_from_mvdiffusion(mvdiffusion_path, front_from_pil_or_path=None):
    import os
    image_list = []
    for dir in ['front', 'front_right', 'right', 'back', 'left', 'front_left']:
        image_path = os.path.join(mvdiffusion_path, f"rgb_000_{dir}.png")
        pil = Image.open(image_path)
        if dir == 'front':
            if front_from_pil_or_path is not None:
                if isinstance(front_from_pil_or_path, str):
                    replace_pil = Image.open(front_from_pil_or_path)
                else:
                    replace_pil = front_from_pil_or_path
                # align replace_pil with pil using bounding box in alpha channel
                pil = align_with_alpha_bbox(replace_pil, pil, final_size=1024)
        image_list.append(pil)
    return image_list

def load_image_list_from_img_grid(img_grid_path, resolution = 1024):
    img_list = []
    grid = Image.open(img_grid_path)
    w, h = grid.size
    for row in range(0, h, resolution):
        for col in range(0, w, resolution):
            img_list.append(grid.crop((col, row, col + resolution, row + resolution)))
    return img_list