Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,494 Bytes
37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
from types import FunctionType
from typing import Any, Dict, List
from diffusers import UNet2DConditionModel
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel, ImageProjection
from diffusers.models.attention_processor import Attention, AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor
from dataclasses import dataclass, field
from diffusers.loaders import IPAdapterMixin
from custum_3d_diffusion.custum_modules.attention_processors import add_extra_processor, switch_extra_processor, add_multiview_processor, switch_multiview_processor, add_switch, change_switch
@dataclass
class AttnConfig:
"""
* CrossAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), IPAdapter module (achieves conceptual control).
* SelfAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), Reference Attention module (achieves pixel-level control).
* Multiview Attention module: Multiview Attention module (achieves multi-view consistency).
* Cross Modality Attention module: Cross Modality Attention module (achieves multi-modality consistency).
For setups:
train_xxx_lr is implemented in the U-Net architecture.
enable_xxx_lora is implemented in the U-Net architecture.
enable_xxx_ip is implemented in the processor and U-Net architecture.
enable_xxx_ref_proj_in is implemented in the processor.
"""
latent_size: int = 64
train_lr: float = 0
# for cross attention
# 0 learning rate for not training
train_cross_attn_lr: float = 0
train_cross_attn_lora_lr: float = 0
train_cross_attn_ip_lr: float = 0 # 0 for not trained
init_cross_attn_lora: bool = False
enable_cross_attn_lora: bool = False
init_cross_attn_ip: bool = False
enable_cross_attn_ip: bool = False
cross_attn_lora_rank: int = 64 # 0 for not enabled
cross_attn_lora_only_kv: bool = False
ipadapter_pretrained_name: str = "h94/IP-Adapter"
ipadapter_subfolder_name: str = "models"
ipadapter_weight_name: str = "ip-adapter-plus_sd15.safetensors"
ipadapter_effect_on: str = "all" # all, first
# for self attention
train_self_attn_lr: float = 0
train_self_attn_lora_lr: float = 0
init_self_attn_lora: bool = False
enable_self_attn_lora: bool = False
self_attn_lora_rank: int = 64
self_attn_lora_only_kv: bool = False
train_self_attn_ref_lr: float = 0
train_ref_unet_lr: float = 0
init_self_attn_ref: bool = False
enable_self_attn_ref: bool = False
self_attn_ref_other_model_name: str = ""
self_attn_ref_position: str = "attn1"
self_attn_ref_pixel_wise_crosspond: bool = False # enable pixel_wise_crosspond in refattn
self_attn_ref_chain_pos: str = "parralle" # before or parralle or after
self_attn_ref_effect_on: str = "all" # all or first, for _crosspond attn
self_attn_ref_zero_init: bool = True
use_simple3d_attn: bool = False
# for multiview attention
init_multiview_attn: bool = False
enable_multiview_attn: bool = False
multiview_attn_position: str = "attn1"
multiview_chain_pose: str = "parralle" # before or parralle or after
num_modalities: int = 1
use_mv_joint_attn: bool = False
# for unet
init_unet_path: str = "runwayml/stable-diffusion-v1-5"
init_num_cls_label: int = 0 # for initialize
cls_labels: List[int] = field(default_factory=lambda: [])
cls_label_type: str = "embedding"
cat_condition: bool = False # cat condition to input
class Configurable:
attn_config: AttnConfig
def set_config(self, attn_config: AttnConfig):
raise NotImplementedError()
def update_config(self, attn_config: AttnConfig):
self.attn_config = attn_config
def do_set_config(self, attn_config: AttnConfig):
self.set_config(attn_config)
for name, module in self.named_modules():
if isinstance(module, Configurable):
if hasattr(module, "do_set_config"):
module.do_set_config(attn_config)
else:
print(f"Warning: {name} has no attribute do_set_config, but is an instance of Configurable")
module.attn_config = attn_config
def do_update_config(self, attn_config: AttnConfig):
self.update_config(attn_config)
for name, module in self.named_modules():
if isinstance(module, Configurable):
if hasattr(module, "do_update_config"):
module.do_update_config(attn_config)
else:
print(f"Warning: {name} has no attribute do_update_config, but is an instance of Configurable")
module.attn_config = attn_config
from diffusers import ModelMixin # Must import ModelMixin for CompiledUNet
class UnifieldWrappedUNet(UNet2DConditionModel):
forward_hook: FunctionType
def forward(self, *args, **kwargs):
if hasattr(self, 'forward_hook'):
return self.forward_hook(super().forward, *args, **kwargs)
return super().forward(*args, **kwargs)
class ConfigurableUNet2DConditionModel(Configurable, IPAdapterMixin):
unet: UNet2DConditionModel
cls_embedding_param_dict = {}
cross_attn_lora_param_dict = {}
self_attn_lora_param_dict = {}
cross_attn_param_dict = {}
self_attn_param_dict = {}
ipadapter_param_dict = {}
ref_attn_param_dict = {}
ref_unet_param_dict = {}
multiview_attn_param_dict = {}
other_param_dict = {}
rev_param_name_mapping = {}
class_labels = []
def set_class_labels(self, class_labels: torch.Tensor):
if self.attn_config.init_num_cls_label != 0:
self.class_labels = class_labels.to(self.unet.device).long()
def __init__(self, init_config: AttnConfig, weight_dtype) -> None:
super().__init__()
self.weight_dtype = weight_dtype
self.set_config(init_config)
def enable_xformers_memory_efficient_attention(self):
self.unet.enable_xformers_memory_efficient_attention
def recursive_add_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
recursive_add_processors(f"{name}.{sub_name}", child)
if isinstance(module, Attention):
if hasattr(module, 'xformers_not_supported'):
return
old_processor = module.get_processor()
if isinstance(old_processor, (AttnProcessor, AttnProcessor2_0)):
module.set_use_memory_efficient_attention_xformers(True)
for name, module in self.unet.named_children():
recursive_add_processors(name, module)
def __getattr__(self, name: str) -> Any:
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
# --- for IPAdapterMixin
def register_modules(self, **kwargs):
for name, module in kwargs.items():
# set models
setattr(self, name, module)
def register_to_config(self, **kwargs):
pass
def unload_ip_adapter(self):
raise NotImplementedError()
# --- for Configurable
def get_refunet(self):
if self.attn_config.self_attn_ref_other_model_name == "self":
return self.unet
else:
return self.unet.ref_unet
def set_config(self, attn_config: AttnConfig):
self.attn_config = attn_config
unet_type = UnifieldWrappedUNet
# class_embed_type = "projection" for 'camera'
# class_embed_type = None for 'embedding'
unet_kwargs = {}
if attn_config.init_num_cls_label > 0:
if attn_config.cls_label_type == "embedding":
unet_kwargs = {
"num_class_embeds": attn_config.init_num_cls_label,
"device_map": None,
"low_cpu_mem_usage": False,
"class_embed_type": None,
}
else:
raise ValueError(f"cls_label_type {attn_config.cls_label_type} is not supported")
self.unet: UnifieldWrappedUNet = unet_type.from_pretrained(
attn_config.init_unet_path, subfolder="unet", torch_dtype=self.weight_dtype,
**unet_kwargs
)
assert isinstance(self.unet, UnifieldWrappedUNet)
self.unet.forward_hook = self.unet_forward_hook
if self.attn_config.cat_condition:
# double in_channels
if self.unet.config.in_channels != 8:
self.unet.register_to_config(in_channels=self.unet.config.in_channels * 2)
# repeate unet.conv_in weight twice
doubled_conv_in = torch.nn.Conv2d(self.unet.conv_in.in_channels * 2, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
doubled_conv_in.weight.data = torch.cat([self.unet.conv_in.weight.data, torch.zeros_like(self.unet.conv_in.weight.data)], dim=1)
doubled_conv_in.bias.data = self.unet.conv_in.bias.data
self.unet.conv_in = doubled_conv_in
used_param_ids = set()
if attn_config.init_cross_attn_lora:
# setup lora
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
if attn_config.cross_attn_lora_only_kv:
target_modules=["attn2.to_k", "attn2.to_v"]
else:
target_modules=["attn2.to_k", "attn2.to_q", "attn2.to_v", "attn2.to_out.0"]
lora_config: LoraConfig = LoraConfig(
r=attn_config.cross_attn_lora_rank,
lora_alpha=attn_config.cross_attn_lora_rank,
init_lora_weights="gaussian",
target_modules=target_modules,
)
adapter_name="cross_attn_lora"
self.unet.add_adapter(lora_config, adapter_name=adapter_name)
# update cross_attn_lora_param_dict
self.cross_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids}
used_param_ids.update(self.cross_attn_lora_param_dict.keys())
if attn_config.init_self_attn_lora:
# setup lora
from peft import LoraConfig
if attn_config.self_attn_lora_only_kv:
target_modules=["attn1.to_k", "attn1.to_v"]
else:
target_modules=["attn1.to_k", "attn1.to_q", "attn1.to_v", "attn1.to_out.0"]
lora_config: LoraConfig = LoraConfig(
r=attn_config.self_attn_lora_rank,
lora_alpha=attn_config.self_attn_lora_rank,
init_lora_weights="gaussian",
target_modules=target_modules,
)
adapter_name="self_attn_lora"
self.unet.add_adapter(lora_config, adapter_name=adapter_name)
# update cross_self_lora_param_dict
self.self_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids}
used_param_ids.update(self.self_attn_lora_param_dict.keys())
if attn_config.init_num_cls_label != 0:
self.cls_embedding_param_dict = {id(param): param for param in self.unet.class_embedding.parameters()}
used_param_ids.update(self.cls_embedding_param_dict.keys())
self.set_class_labels(torch.tensor(attn_config.cls_labels).long())
if attn_config.init_cross_attn_ip:
self.image_encoder = None
# setup ipadapter
self.load_ip_adapter(
attn_config.ipadapter_pretrained_name,
subfolder=attn_config.ipadapter_subfolder_name,
weight_name=attn_config.ipadapter_weight_name
)
# warp ip_adapter_attn_proc with switch
from diffusers.models.attention_processor import IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0
add_switch(self.unet, module_filter=lambda x: isinstance(x, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)), switch_dict_fn=lambda x: {"ipadapter": x, "default": XFormersAttnProcessor()}, switch_name="ipadapter_switch", enabled_proc="ipadapter")
# update ipadapter_param_dict
# weights are in attention processors and unet.encoder_hid_proj
self.ipadapter_param_dict = {id(param): param for param in self.unet.encoder_hid_proj.parameters() if id(param) not in used_param_ids}
used_param_ids.update(self.ipadapter_param_dict.keys())
print("DEBUG: ipadapter_param_dict len in encoder_hid_proj", len(self.ipadapter_param_dict))
for name, processor in self.unet.attn_processors.items():
if hasattr(processor, "to_k_ip"):
self.ipadapter_param_dict.update({id(param): param for param in processor.parameters()})
print(f"DEBUG: ipadapter_param_dict len in all", len(self.ipadapter_param_dict))
ref_unet = None
if attn_config.init_self_attn_ref:
# setup reference attention processor
if attn_config.self_attn_ref_other_model_name == "self":
raise NotImplementedError("self reference is not fully implemented")
else:
ref_unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained(
attn_config.self_attn_ref_other_model_name, subfolder="unet", torch_dtype=self.unet.dtype
)
ref_unet.to(self.unet.device)
if self.attn_config.train_ref_unet_lr == 0:
ref_unet.eval()
ref_unet.requires_grad_(False)
else:
ref_unet.train()
add_extra_processor(
model=ref_unet,
enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"),
mode='extract',
with_proj_in=False,
pixel_wise_crosspond=False,
)
# NOTE: Here require cross_attention_dim in two unet's self attention should be the same
processor_dict = add_extra_processor(
model=self.unet,
enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"),
mode='inject',
with_proj_in=False,
pixel_wise_crosspond=attn_config.self_attn_ref_pixel_wise_crosspond,
crosspond_effect_on=attn_config.self_attn_ref_effect_on,
crosspond_chain_pos=attn_config.self_attn_ref_chain_pos,
simple_3d=attn_config.use_simple3d_attn,
)
self.ref_unet_param_dict = {id(param): param for name, param in ref_unet.named_parameters() if id(param) not in used_param_ids and (attn_config.self_attn_ref_position in name)}
if attn_config.self_attn_ref_chain_pos != "after":
# pop untrainable paramters
for name, param in ref_unet.named_parameters():
if id(param) in self.ref_unet_param_dict and ('up_blocks.3.attentions.2.transformer_blocks.0.' in name):
self.ref_unet_param_dict.pop(id(param))
used_param_ids.update(self.ref_unet_param_dict.keys())
# update ref_attn_param_dict
self.ref_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids}
used_param_ids.update(self.ref_attn_param_dict.keys())
if attn_config.init_multiview_attn:
processor_dict = add_multiview_processor(
model = self.unet,
enable_filter = lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor"),
num_modalities = attn_config.num_modalities,
base_img_size = attn_config.latent_size,
chain_pos = attn_config.multiview_chain_pose,
)
# update multiview_attn_param_dict
self.multiview_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids}
used_param_ids.update(self.multiview_attn_param_dict.keys())
# initialize cross_attn_param_dict parameters
self.cross_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn2" in name and id(param) not in used_param_ids}
used_param_ids.update(self.cross_attn_param_dict.keys())
# initialize self_attn_param_dict parameters
self.self_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn1" in name and id(param) not in used_param_ids}
used_param_ids.update(self.self_attn_param_dict.keys())
# initialize other_param_dict parameters
self.other_param_dict = {id(param): param for name, param in self.unet.named_parameters() if id(param) not in used_param_ids}
if ref_unet is not None:
self.unet.ref_unet = ref_unet
self.rev_param_name_mapping = {id(param): name for name, param in self.unet.named_parameters()}
self.update_config(attn_config, force_update=True)
return self.unet
_attn_keys_to_update = ["enable_cross_attn_lora", "enable_cross_attn_ip", "enable_self_attn_lora", "enable_self_attn_ref", "enable_multiview_attn", "cls_labels"]
def update_config(self, attn_config: AttnConfig, force_update=False):
assert isinstance(self.unet, UNet2DConditionModel), "unet must be an instance of UNet2DConditionModel"
need_to_update = False
# update cls_labels
for key in self._attn_keys_to_update:
if getattr(self.attn_config, key) != getattr(attn_config, key):
need_to_update = True
break
if not force_update and not need_to_update:
return
self.set_class_labels(torch.tensor(attn_config.cls_labels).long())
# setup loras
if self.attn_config.init_cross_attn_lora or self.attn_config.init_self_attn_lora:
if attn_config.enable_cross_attn_lora or attn_config.enable_self_attn_lora:
cross_attn_lora_weight = 1. if attn_config.enable_cross_attn_lora > 0 else 0
self_attn_lora_weight = 1. if attn_config.enable_self_attn_lora > 0 else 0
self.unet.set_adapters(["cross_attn_lora", "self_attn_lora"], weights=[cross_attn_lora_weight, self_attn_lora_weight])
else:
self.unet.disable_adapters()
# setup ipadapter
if self.attn_config.init_cross_attn_ip:
if attn_config.enable_cross_attn_ip:
change_switch(self.unet, "ipadapter_switch", "ipadapter")
else:
change_switch(self.unet, "ipadapter_switch", "default")
# setup reference attention processor
if self.attn_config.init_self_attn_ref:
if attn_config.enable_self_attn_ref:
switch_extra_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"))
else:
switch_extra_processor(self.unet, enable_filter=lambda name: False)
# setup multiview attention processor
if self.attn_config.init_multiview_attn:
if attn_config.enable_multiview_attn:
switch_multiview_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor"))
else:
switch_multiview_processor(self.unet, enable_filter=lambda name: False)
# update cls_labels
for key in self._attn_keys_to_update:
setattr(self.attn_config, key, getattr(attn_config, key))
def unet_forward_hook(self, raw_forward, sample: torch.FloatTensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, *args, cross_attention_kwargs=None, condition_latents=None, class_labels=None, noisy_condition_input=False, cond_pixels_clip=None, **kwargs):
if class_labels is None and len(self.class_labels) > 0:
class_labels = self.class_labels.repeat(sample.shape[0] // self.class_labels.shape[0]).to(sample.device)
elif self.attn_config.init_num_cls_label != 0:
assert class_labels is not None, "class_labels should be passed if self.class_labels is empty and self.attn_config.init_num_cls_label is not 0"
if class_labels is not None:
if self.attn_config.cls_label_type == "embedding":
pass
else:
raise ValueError(f"cls_label_type {self.attn_config.cls_label_type} is not supported")
if self.attn_config.init_self_attn_ref and self.attn_config.enable_self_attn_ref:
# NOTE: extra step, extract condition
ref_dict = {}
ref_unet = self.get_refunet().to(sample.device)
assert condition_latents is not None
if self.attn_config.self_attn_ref_other_model_name == "self":
raise NotImplementedError()
else:
with torch.no_grad():
cond_encoder_hidden_states = encoder_hidden_states.reshape(condition_latents.shape[0], -1, *encoder_hidden_states.shape[1:])[:, 0]
if timestep.dim() == 0:
cond_timestep = timestep
else:
cond_timestep = timestep.reshape(condition_latents.shape[0], -1)[:, 0]
ref_unet(condition_latents, cond_timestep, cond_encoder_hidden_states, cross_attention_kwargs=dict(ref_dict=ref_dict))
# NOTE: extra step, inject condition
# Predict the noise residual and compute loss
if cross_attention_kwargs is None:
cross_attention_kwargs = {}
cross_attention_kwargs.update(ref_dict=ref_dict, mode='inject')
elif condition_latents is not None:
if not hasattr(self, 'condition_latents_raised'):
print("Warning! condition_latents is not None, but self_attn_ref is not enabled! This warning will only be raised once.")
self.condition_latents_raised = True
if self.attn_config.init_cross_attn_ip:
raise NotImplementedError()
if self.attn_config.cat_condition:
assert condition_latents is not None
B = condition_latents.shape[0]
cat_latents = condition_latents.reshape(B, 1, *condition_latents.shape[1:]).repeat(1, sample.shape[0] // B, 1, 1, 1).reshape(*sample.shape)
sample = torch.cat([sample, cat_latents], dim=1)
return raw_forward(sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, **kwargs)
|