File size: 23,494 Bytes
37aeb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
from types import FunctionType
from typing import Any, Dict, List
from diffusers import UNet2DConditionModel
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel, ImageProjection
from diffusers.models.attention_processor import Attention, AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor
from dataclasses import dataclass, field
from diffusers.loaders import IPAdapterMixin
from custum_3d_diffusion.custum_modules.attention_processors import add_extra_processor, switch_extra_processor, add_multiview_processor, switch_multiview_processor, add_switch, change_switch

@dataclass
class AttnConfig:
    """        
    * CrossAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), IPAdapter module (achieves conceptual control).
    * SelfAttention: Attention module (inherits knowledge), LoRA module (achieves fine-tuning), Reference Attention module (achieves pixel-level control).
    * Multiview Attention module: Multiview Attention module (achieves multi-view consistency).
    * Cross Modality Attention module: Cross Modality Attention module (achieves multi-modality consistency).
    
    For setups:
        train_xxx_lr is implemented in the U-Net architecture.
        enable_xxx_lora is implemented in the U-Net architecture.
        enable_xxx_ip is implemented in the processor and U-Net architecture.
        enable_xxx_ref_proj_in is implemented in the processor.
    """
    latent_size: int = 64
    
    train_lr: float = 0
    # for cross attention
    # 0 learning rate for not training
    train_cross_attn_lr: float = 0
    train_cross_attn_lora_lr: float = 0       
    train_cross_attn_ip_lr: float = 0      # 0 for not trained
    init_cross_attn_lora: bool = False
    enable_cross_attn_lora: bool = False
    init_cross_attn_ip: bool = False
    enable_cross_attn_ip: bool = False
    cross_attn_lora_rank: int = 64        # 0 for not enabled
    cross_attn_lora_only_kv: bool = False
    ipadapter_pretrained_name: str = "h94/IP-Adapter"
    ipadapter_subfolder_name: str = "models"
    ipadapter_weight_name: str = "ip-adapter-plus_sd15.safetensors"
    ipadapter_effect_on: str = "all"    # all, first

    # for self attention
    train_self_attn_lr: float = 0
    train_self_attn_lora_lr: float = 0
    init_self_attn_lora: bool = False
    enable_self_attn_lora: bool = False
    self_attn_lora_rank: int = 64
    self_attn_lora_only_kv: bool = False

    train_self_attn_ref_lr: float = 0
    train_ref_unet_lr: float = 0
    init_self_attn_ref: bool = False
    enable_self_attn_ref: bool = False      
    self_attn_ref_other_model_name: str = ""
    self_attn_ref_position: str = "attn1"
    self_attn_ref_pixel_wise_crosspond: bool = False    # enable pixel_wise_crosspond in refattn
    self_attn_ref_chain_pos: str = "parralle"           # before or parralle or after
    self_attn_ref_effect_on: str = "all"                # all or first, for _crosspond attn
    self_attn_ref_zero_init: bool = True
    use_simple3d_attn: bool = False

    # for multiview attention
    init_multiview_attn: bool = False
    enable_multiview_attn: bool = False
    multiview_attn_position: str = "attn1"
    multiview_chain_pose: str = "parralle"             # before or parralle or after
    num_modalities: int = 1
    use_mv_joint_attn: bool = False
    
    # for unet
    init_unet_path: str = "runwayml/stable-diffusion-v1-5"
    init_num_cls_label: int = 0                         # for initialize
    cls_labels: List[int] = field(default_factory=lambda: [])
    cls_label_type: str = "embedding"
    cat_condition: bool = False                         # cat condition to input

class Configurable:
    attn_config: AttnConfig

    def set_config(self, attn_config: AttnConfig):
        raise NotImplementedError()
    
    def update_config(self, attn_config: AttnConfig):
        self.attn_config = attn_config
    
    def do_set_config(self, attn_config: AttnConfig):
        self.set_config(attn_config)
        for name, module in self.named_modules():
            if isinstance(module, Configurable):
                if hasattr(module, "do_set_config"):
                    module.do_set_config(attn_config)
                else:
                    print(f"Warning: {name} has no attribute do_set_config, but is an instance of Configurable")
                    module.attn_config = attn_config

    def do_update_config(self, attn_config: AttnConfig):
        self.update_config(attn_config)
        for name, module in self.named_modules():
            if isinstance(module, Configurable):
                if hasattr(module, "do_update_config"):
                    module.do_update_config(attn_config)
                else:
                    print(f"Warning: {name} has no attribute do_update_config, but is an instance of Configurable")
                    module.attn_config = attn_config

from diffusers import ModelMixin  # Must import ModelMixin for CompiledUNet
class UnifieldWrappedUNet(UNet2DConditionModel):
    forward_hook: FunctionType

    def forward(self, *args, **kwargs):
        if hasattr(self, 'forward_hook'):
            return self.forward_hook(super().forward, *args, **kwargs)
        return super().forward(*args, **kwargs)


class ConfigurableUNet2DConditionModel(Configurable, IPAdapterMixin):
    unet: UNet2DConditionModel

    cls_embedding_param_dict = {}
    cross_attn_lora_param_dict = {}
    self_attn_lora_param_dict = {}
    cross_attn_param_dict = {}
    self_attn_param_dict = {}
    ipadapter_param_dict = {}
    ref_attn_param_dict = {}
    ref_unet_param_dict = {}
    multiview_attn_param_dict = {}
    other_param_dict = {}
    
    rev_param_name_mapping = {}

    class_labels = []
    def set_class_labels(self, class_labels: torch.Tensor):
        if self.attn_config.init_num_cls_label != 0:
            self.class_labels = class_labels.to(self.unet.device).long()

    def __init__(self, init_config: AttnConfig, weight_dtype) -> None:
        super().__init__()
        self.weight_dtype = weight_dtype
        self.set_config(init_config)

    def enable_xformers_memory_efficient_attention(self):
        self.unet.enable_xformers_memory_efficient_attention
        def recursive_add_processors(name: str, module: torch.nn.Module):
            for sub_name, child in module.named_children():
                recursive_add_processors(f"{name}.{sub_name}", child)

            if isinstance(module, Attention):
                if hasattr(module, 'xformers_not_supported'):
                    return
                old_processor = module.get_processor()
                if isinstance(old_processor, (AttnProcessor, AttnProcessor2_0)):
                    module.set_use_memory_efficient_attention_xformers(True)

        for name, module in self.unet.named_children():
            recursive_add_processors(name, module)

    def __getattr__(self, name: str) -> Any:
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.unet, name)
    
    # --- for IPAdapterMixin
    
    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # set models
            setattr(self, name, module)

    def register_to_config(self, **kwargs):
        pass

    def unload_ip_adapter(self):
        raise NotImplementedError()

    # --- for Configurable

    def get_refunet(self):
        if self.attn_config.self_attn_ref_other_model_name == "self":
            return self.unet
        else:
            return self.unet.ref_unet

    def set_config(self, attn_config: AttnConfig):
        self.attn_config = attn_config

        unet_type = UnifieldWrappedUNet
        # class_embed_type = "projection" for 'camera'
        # class_embed_type = None for 'embedding'
        unet_kwargs = {}
        if attn_config.init_num_cls_label > 0:
            if attn_config.cls_label_type == "embedding":
                unet_kwargs = {
                    "num_class_embeds": attn_config.init_num_cls_label, 
                    "device_map": None, 
                    "low_cpu_mem_usage": False,
                    "class_embed_type": None,
                }
            else:
                raise ValueError(f"cls_label_type {attn_config.cls_label_type} is not supported")
        
        self.unet: UnifieldWrappedUNet = unet_type.from_pretrained(
            attn_config.init_unet_path, subfolder="unet", torch_dtype=self.weight_dtype, 
            **unet_kwargs
        )
        assert isinstance(self.unet, UnifieldWrappedUNet)
        self.unet.forward_hook = self.unet_forward_hook

        if self.attn_config.cat_condition:
            # double in_channels
            if self.unet.config.in_channels != 8:
                self.unet.register_to_config(in_channels=self.unet.config.in_channels * 2)
                # repeate unet.conv_in weight twice
                doubled_conv_in = torch.nn.Conv2d(self.unet.conv_in.in_channels * 2, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
                doubled_conv_in.weight.data = torch.cat([self.unet.conv_in.weight.data, torch.zeros_like(self.unet.conv_in.weight.data)], dim=1)
                doubled_conv_in.bias.data = self.unet.conv_in.bias.data
                self.unet.conv_in = doubled_conv_in
        
        used_param_ids = set()
        
        if attn_config.init_cross_attn_lora:
            # setup lora
            from peft import LoraConfig
            from peft.utils import get_peft_model_state_dict
            if attn_config.cross_attn_lora_only_kv:
                target_modules=["attn2.to_k", "attn2.to_v"]
            else:
                target_modules=["attn2.to_k", "attn2.to_q", "attn2.to_v", "attn2.to_out.0"]
            lora_config: LoraConfig = LoraConfig(
                r=attn_config.cross_attn_lora_rank,
                lora_alpha=attn_config.cross_attn_lora_rank,
                init_lora_weights="gaussian",
                target_modules=target_modules,
            )
            adapter_name="cross_attn_lora"
            self.unet.add_adapter(lora_config, adapter_name=adapter_name)
            # update cross_attn_lora_param_dict
            self.cross_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids}
            used_param_ids.update(self.cross_attn_lora_param_dict.keys())

        if attn_config.init_self_attn_lora:
            # setup lora
            from peft import LoraConfig
            if attn_config.self_attn_lora_only_kv:
                target_modules=["attn1.to_k", "attn1.to_v"]
            else:
                target_modules=["attn1.to_k", "attn1.to_q", "attn1.to_v", "attn1.to_out.0"]
            lora_config: LoraConfig = LoraConfig(
                r=attn_config.self_attn_lora_rank,
                lora_alpha=attn_config.self_attn_lora_rank,
                init_lora_weights="gaussian",
                target_modules=target_modules,
            )
            adapter_name="self_attn_lora"
            self.unet.add_adapter(lora_config, adapter_name=adapter_name)
            # update cross_self_lora_param_dict
            self.self_attn_lora_param_dict = {id(param): param for name, param in self.unet.named_parameters() if adapter_name in name and id(param) not in used_param_ids}
            used_param_ids.update(self.self_attn_lora_param_dict.keys())

        if attn_config.init_num_cls_label != 0:
            self.cls_embedding_param_dict = {id(param): param for param in self.unet.class_embedding.parameters()}
            used_param_ids.update(self.cls_embedding_param_dict.keys())
            self.set_class_labels(torch.tensor(attn_config.cls_labels).long())
        
        if attn_config.init_cross_attn_ip:
            self.image_encoder = None
            # setup ipadapter
            self.load_ip_adapter(
                attn_config.ipadapter_pretrained_name,
                subfolder=attn_config.ipadapter_subfolder_name,
                weight_name=attn_config.ipadapter_weight_name
            )
            # warp ip_adapter_attn_proc with switch
            from diffusers.models.attention_processor import IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0
            add_switch(self.unet, module_filter=lambda x: isinstance(x, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)), switch_dict_fn=lambda x: {"ipadapter": x, "default": XFormersAttnProcessor()}, switch_name="ipadapter_switch", enabled_proc="ipadapter")
            # update ipadapter_param_dict
            # weights are in attention processors and unet.encoder_hid_proj
            self.ipadapter_param_dict = {id(param): param for param in self.unet.encoder_hid_proj.parameters() if id(param) not in used_param_ids}
            used_param_ids.update(self.ipadapter_param_dict.keys())
            print("DEBUG: ipadapter_param_dict len in encoder_hid_proj", len(self.ipadapter_param_dict))
            for name, processor in self.unet.attn_processors.items():
                if hasattr(processor, "to_k_ip"):
                    self.ipadapter_param_dict.update({id(param): param for param in processor.parameters()})
            print(f"DEBUG: ipadapter_param_dict len in all", len(self.ipadapter_param_dict))

        ref_unet = None
        if attn_config.init_self_attn_ref:
            # setup reference attention processor
            if attn_config.self_attn_ref_other_model_name == "self":
                raise NotImplementedError("self reference is not fully implemented")
            else:
                ref_unet: UNet2DConditionModel = UNet2DConditionModel.from_pretrained(
                    attn_config.self_attn_ref_other_model_name, subfolder="unet", torch_dtype=self.unet.dtype
                )
                ref_unet.to(self.unet.device)
                if self.attn_config.train_ref_unet_lr == 0:
                    ref_unet.eval()
                    ref_unet.requires_grad_(False)
                else:
                    ref_unet.train()

                add_extra_processor(
                    model=ref_unet, 
                    enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"), 
                    mode='extract',
                    with_proj_in=False,
                    pixel_wise_crosspond=False,
                )
                # NOTE: Here require cross_attention_dim in two unet's self attention should be the same
                processor_dict = add_extra_processor(
                    model=self.unet,
                    enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"),
                    mode='inject',
                    with_proj_in=False,
                    pixel_wise_crosspond=attn_config.self_attn_ref_pixel_wise_crosspond,
                    crosspond_effect_on=attn_config.self_attn_ref_effect_on,
                    crosspond_chain_pos=attn_config.self_attn_ref_chain_pos,
                    simple_3d=attn_config.use_simple3d_attn,
                )
                self.ref_unet_param_dict = {id(param): param for name, param in ref_unet.named_parameters() if id(param) not in used_param_ids and (attn_config.self_attn_ref_position in name)}
                if attn_config.self_attn_ref_chain_pos != "after":
                    # pop untrainable paramters
                    for name, param in ref_unet.named_parameters():
                        if id(param) in self.ref_unet_param_dict and ('up_blocks.3.attentions.2.transformer_blocks.0.' in name):
                            self.ref_unet_param_dict.pop(id(param))
                used_param_ids.update(self.ref_unet_param_dict.keys())
            # update ref_attn_param_dict
            self.ref_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids}
            used_param_ids.update(self.ref_attn_param_dict.keys())

        if attn_config.init_multiview_attn:
            processor_dict = add_multiview_processor(
                model = self.unet, 
                enable_filter = lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor"),
                num_modalities = attn_config.num_modalities,    
                base_img_size = attn_config.latent_size,      
                chain_pos = attn_config.multiview_chain_pose,
            )
            # update multiview_attn_param_dict
            self.multiview_attn_param_dict = {id(param): param for name, param in processor_dict.named_parameters() if id(param) not in used_param_ids}
            used_param_ids.update(self.multiview_attn_param_dict.keys())
        
        # initialize cross_attn_param_dict parameters
        self.cross_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn2" in name and id(param) not in used_param_ids}
        used_param_ids.update(self.cross_attn_param_dict.keys())
        
        # initialize self_attn_param_dict parameters
        self.self_attn_param_dict = {id(param): param for name, param in self.unet.named_parameters() if "attn1" in name and id(param) not in used_param_ids}
        used_param_ids.update(self.self_attn_param_dict.keys())
        
        # initialize other_param_dict parameters
        self.other_param_dict = {id(param): param for name, param in self.unet.named_parameters() if id(param) not in used_param_ids}
        
        if ref_unet is not None:
            self.unet.ref_unet = ref_unet
            
        self.rev_param_name_mapping = {id(param): name for name, param in self.unet.named_parameters()}
        
        self.update_config(attn_config, force_update=True)
        return self.unet
    
    _attn_keys_to_update = ["enable_cross_attn_lora", "enable_cross_attn_ip", "enable_self_attn_lora", "enable_self_attn_ref", "enable_multiview_attn", "cls_labels"]
    
    def update_config(self, attn_config: AttnConfig, force_update=False):
        assert isinstance(self.unet, UNet2DConditionModel), "unet must be an instance of UNet2DConditionModel"

        need_to_update = False
        # update cls_labels
        for key in self._attn_keys_to_update:
            if getattr(self.attn_config, key) != getattr(attn_config, key):
                need_to_update = True
                break
        if not force_update and not need_to_update:
            return

        self.set_class_labels(torch.tensor(attn_config.cls_labels).long())
        
        # setup loras
        if self.attn_config.init_cross_attn_lora or self.attn_config.init_self_attn_lora:
            if attn_config.enable_cross_attn_lora or attn_config.enable_self_attn_lora:
                cross_attn_lora_weight = 1. if attn_config.enable_cross_attn_lora > 0 else 0
                self_attn_lora_weight = 1. if attn_config.enable_self_attn_lora > 0 else 0
                self.unet.set_adapters(["cross_attn_lora", "self_attn_lora"], weights=[cross_attn_lora_weight, self_attn_lora_weight])
            else:
                self.unet.disable_adapters()

        # setup ipadapter
        if self.attn_config.init_cross_attn_ip:
            if attn_config.enable_cross_attn_ip:
                change_switch(self.unet, "ipadapter_switch", "ipadapter")
            else:
                change_switch(self.unet, "ipadapter_switch", "default")
            
        # setup reference attention processor
        if self.attn_config.init_self_attn_ref:
            if attn_config.enable_self_attn_ref:
                switch_extra_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.self_attn_ref_position}.processor"))
            else:
                switch_extra_processor(self.unet, enable_filter=lambda name: False)
        
        # setup multiview attention processor
        if self.attn_config.init_multiview_attn:
            if attn_config.enable_multiview_attn:
                switch_multiview_processor(self.unet, enable_filter=lambda name: name.endswith(f"{attn_config.multiview_attn_position}.processor"))
            else:
                switch_multiview_processor(self.unet, enable_filter=lambda name: False)
        
        # update cls_labels
        for key in self._attn_keys_to_update:
            setattr(self.attn_config, key, getattr(attn_config, key))

    def unet_forward_hook(self, raw_forward, sample: torch.FloatTensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, *args, cross_attention_kwargs=None, condition_latents=None, class_labels=None, noisy_condition_input=False, cond_pixels_clip=None, **kwargs):
        if class_labels is None and len(self.class_labels) > 0:
            class_labels = self.class_labels.repeat(sample.shape[0] // self.class_labels.shape[0]).to(sample.device)
        elif self.attn_config.init_num_cls_label != 0:
            assert class_labels is not None, "class_labels should be passed if self.class_labels is empty and self.attn_config.init_num_cls_label is not 0"
        if class_labels is not None:
            if self.attn_config.cls_label_type == "embedding":
                pass
            else:
                raise ValueError(f"cls_label_type {self.attn_config.cls_label_type} is not supported")
        if self.attn_config.init_self_attn_ref and self.attn_config.enable_self_attn_ref:
            # NOTE: extra step, extract condition
            ref_dict = {}
            ref_unet = self.get_refunet().to(sample.device)
            assert condition_latents is not None
            if self.attn_config.self_attn_ref_other_model_name == "self":
                raise NotImplementedError()
            else:
                with torch.no_grad():
                    cond_encoder_hidden_states = encoder_hidden_states.reshape(condition_latents.shape[0], -1, *encoder_hidden_states.shape[1:])[:, 0]
                    if timestep.dim() == 0:
                        cond_timestep = timestep
                    else:
                        cond_timestep = timestep.reshape(condition_latents.shape[0], -1)[:, 0]
                ref_unet(condition_latents, cond_timestep, cond_encoder_hidden_states,  cross_attention_kwargs=dict(ref_dict=ref_dict))
            # NOTE: extra step, inject condition
            # Predict the noise residual and compute loss
            if cross_attention_kwargs is None:
                cross_attention_kwargs = {}
            cross_attention_kwargs.update(ref_dict=ref_dict, mode='inject')
        elif condition_latents is not None:
            if not hasattr(self, 'condition_latents_raised'):
                print("Warning! condition_latents is not None, but self_attn_ref is not enabled! This warning will only be raised once.")
                self.condition_latents_raised = True
        
        if self.attn_config.init_cross_attn_ip:
            raise NotImplementedError()
        
        if self.attn_config.cat_condition:
            assert condition_latents is not None
            B = condition_latents.shape[0]
            cat_latents = condition_latents.reshape(B, 1, *condition_latents.shape[1:]).repeat(1, sample.shape[0] // B, 1, 1, 1).reshape(*sample.shape)
            sample = torch.cat([sample, cat_latents], dim=1)
            
        return raw_forward(sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, **kwargs)