Spaces:
Running
on
Zero
Running
on
Zero
if __name__ == "__main__": | |
import os | |
import sys | |
sys.path.append(os.curdir) | |
if 'CUDA_VISIBLE_DEVICES' not in os.environ: | |
os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
os.environ['TRANSFORMERS_OFFLINE']='0' | |
os.environ['DIFFUSERS_OFFLINE']='0' | |
os.environ['HF_HUB_OFFLINE']='0' | |
os.environ['GRADIO_ANALYTICS_ENABLED']='False' | |
os.environ['HF_ENDPOINT']='https://hf-mirror.com' | |
import torch | |
torch.set_float32_matmul_precision('medium') | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.set_grad_enabled(False) | |
import gradio as gr | |
import argparse | |
from app.gradio_3dgen import create_ui as create_3d_ui | |
# from app.gradio_3dgen_steps import create_step_ui | |
from app.all_models import model_zoo | |
_TITLE = '''Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image''' | |
_DESCRIPTION = ''' | |
[Project page](https://wukailu.github.io/Unique3D/) | |
* High-fidelity and diverse textured meshes generated by Unique3D from single-view images. | |
* The demo is still under construction, and more features are expected to be implemented soon. | |
''' | |
def launch( | |
port, | |
listen=False, | |
share=False, | |
gradio_root="", | |
): | |
model_zoo.init_models() | |
with gr.Blocks( | |
title=_TITLE, | |
theme=gr.themes.Monochrome(), | |
) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
create_3d_ui("wkl") | |
launch_args = {} | |
if listen: | |
launch_args["server_name"] = "0.0.0.0" | |
demo.queue(default_concurrency_limit=1).launch( | |
server_port=None if port == 0 else port, | |
share=share, | |
root_path=gradio_root if gradio_root != "" else None, # "/myapp" | |
**launch_args, | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
args, extra = parser.parse_known_args() | |
parser.add_argument("--listen", action="store_true") | |
parser.add_argument("--port", type=int, default=0) | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--gradio_root", default="") | |
args = parser.parse_args() | |
launch( | |
args.port, | |
listen=args.listen, | |
share=args.share, | |
gradio_root=args.gradio_root, | |
) |