Spaces:
Running
on
Zero
Running
on
Zero
from typing import List | |
import torch | |
import numpy as np | |
from PIL import Image | |
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase | |
from pytorch3d.renderer.mesh.rasterizer import Fragments | |
from pytorch3d.structures import Meshes | |
from pytorch3d.renderer import ( | |
RasterizationSettings, | |
TexturesVertex, | |
FoVPerspectiveCameras, | |
FoVOrthographicCameras, | |
) | |
from pytorch3d.renderer import MeshRasterizer | |
def get_camera(world_to_cam, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'): | |
# pytorch3d expects transforms as row-vectors, so flip rotation: https://github.com/facebookresearch/pytorch3d/issues/1183 | |
R = world_to_cam[:3, :3].t()[None, ...] | |
T = world_to_cam[:3, 3][None, ...] | |
if cam_type == 'fov': | |
camera = FoVPerspectiveCameras(device=world_to_cam.device, R=R, T=T, fov=fov_in_degrees, degrees=True) | |
else: | |
focal_length = 1 / focal_length | |
camera = FoVOrthographicCameras(device=world_to_cam.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length) | |
return camera | |
def render_pix2faces_py3d(meshes, cameras, H=512, W=512, blur_radius=0.0, faces_per_pixel=1): | |
""" | |
Renders pix2face of visible faces. | |
:param mesh: Pytorch3d.structures.Meshes | |
:param cameras: pytorch3d.renderer.Cameras | |
:param H: target image height | |
:param W: target image width | |
:param blur_radius: Float distance in the range [0, 2] used to expand the face | |
bounding boxes for rasterization. Setting blur radius | |
results in blurred edges around the shape instead of a | |
hard boundary. Set to 0 for no blur. | |
:param faces_per_pixel: (int) Number of faces to keep track of per pixel. | |
We return the nearest faces_per_pixel faces along the z-axis. | |
""" | |
# Define the settings for rasterization and shading | |
raster_settings = RasterizationSettings( | |
image_size=(H, W), | |
blur_radius=blur_radius, | |
faces_per_pixel=faces_per_pixel | |
) | |
rasterizer=MeshRasterizer( | |
cameras=cameras, | |
raster_settings=raster_settings | |
) | |
fragments: Fragments = rasterizer(meshes, cameras=cameras) | |
return { | |
"pix_to_face": fragments.pix_to_face[..., 0], | |
} | |
import nvdiffrast.torch as dr | |
def _warmup(glctx, device=None): | |
device = 'cuda' if device is None else device | |
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59 | |
def tensor(*args, **kwargs): | |
return torch.tensor(*args, device=device, **kwargs) | |
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32) | |
tri = tensor([[0, 1, 2]], dtype=torch.int32) | |
dr.rasterize(glctx, pos, tri, resolution=[256, 256]) | |
class Pix2FacesRenderer: | |
def __init__(self, device="cuda"): | |
self._glctx = dr.RasterizeGLContext(output_db=False, device=device) | |
self.device = device | |
_warmup(self._glctx, device) | |
def transform_vertices(self, meshes: Meshes, cameras: CamerasBase): | |
vertices = cameras.transform_points_ndc(meshes.verts_padded()) | |
perspective_correct = cameras.is_perspective() | |
znear = cameras.get_znear() | |
if isinstance(znear, torch.Tensor): | |
znear = znear.min().item() | |
z_clip = None if not perspective_correct or znear is None else znear / 2 | |
if z_clip: | |
vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None] # clip | |
vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices) | |
vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32) | |
return vertices | |
def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512): | |
meshes = meshes.to(self.device) | |
cameras = cameras.to(self.device) | |
vertices = self.transform_vertices(meshes, cameras) | |
faces = meshes.faces_packed().to(torch.int32) | |
rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) #C,H,W,4 | |
pix_to_face = rast_out[..., -1].to(torch.int32) - 1 | |
return pix_to_face | |
pix2faces_renderer = Pix2FacesRenderer() | |
def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024): | |
# pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face'] | |
pix_to_face = pix2faces_renderer.render_pix2faces_nvdiff(meshes, cameras, H=resolution, W=resolution) | |
unique_faces = torch.unique(pix_to_face.flatten()) | |
unique_faces = unique_faces[unique_faces != -1] | |
return unique_faces | |
def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict: | |
""" | |
Projects color from a given image onto a 3D mesh. | |
Args: | |
meshes (pytorch3d.structures.Meshes): The 3D mesh object. | |
cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object. | |
pil_image (PIL.Image.Image): The input image. | |
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True. | |
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05. | |
resolution (int, optional): The resolution of the projection. Defaults to 1024. | |
device (str, optional): The device to use for computation. Defaults to "cuda". | |
debug (bool, optional): Whether to save debug images. Defaults to False. | |
Returns: | |
dict: A dictionary containing the following keys: | |
- "new_texture" (TexturesVertex): The updated texture with interpolated colors. | |
- "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected. | |
- "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices. | |
""" | |
meshes = meshes.to(device) | |
cameras = cameras.to(device) | |
image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device) # in CHW format of [0, 1.] | |
unique_faces = get_visible_faces(meshes, cameras, resolution=resolution) | |
# visible faces | |
faces_normals = meshes.faces_normals_packed()[unique_faces] | |
faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True) | |
world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0] | |
view_direction = world_points[1] - world_points[0] | |
view_direction = view_direction / view_direction.norm(dim=0, keepdim=True) | |
# find invalid faces | |
cos_angles = (faces_normals * view_direction).sum(dim=1) | |
assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}" | |
selected_faces = unique_faces[cos_angles < -eps] | |
# find verts | |
faces = meshes.faces_packed()[selected_faces] # [N, 3] | |
verts = torch.unique(faces.flatten()) # [N, 1] | |
verts_coordinates = meshes.verts_packed()[verts] # [N, 3] | |
# compute color | |
pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] # NDC space points | |
valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1)) # checked, correct | |
valid_pt = pt_tensor[valid, :] | |
valid_idx = verts[valid] | |
valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1) # [N, 4], note that bicubic may give invalid value | |
alpha, valid_color = valid_color[:, 3:], valid_color[:, :3] | |
if not use_alpha: | |
alpha = torch.ones_like(alpha) | |
# modify color | |
old_colors = meshes.textures.verts_features_packed() | |
old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha) | |
new_texture = TexturesVertex(verts_features=[old_colors]) | |
valid_verts_normals = meshes.verts_normals_packed()[valid_idx] | |
valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001) | |
cos_angles = (valid_verts_normals * view_direction).sum(dim=1) | |
return { | |
"new_texture": new_texture, | |
"valid_verts": valid_idx, | |
"valid_colors": valid_color, | |
"valid_alpha": alpha, | |
"cos_angles": cos_angles, | |
} | |
def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict: | |
""" | |
meshes: the mesh with vertex color to be completed. | |
valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1] | |
""" | |
valid_index = valid_index.to(meshes.device) | |
colors = meshes.textures.verts_features_packed() # [V, 3] | |
V = colors.shape[0] | |
invalid_index = torch.ones_like(colors[:, 0]).bool() # [V] | |
invalid_index[valid_index] = False | |
invalid_index = torch.arange(V).to(meshes.device)[invalid_index] | |
L = meshes.laplacian_packed() | |
E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device) | |
L = L + E | |
# E = torch.eye(V, layout=torch.sparse_coo, device=meshes.device) | |
# L = L + E | |
colored_count = torch.ones_like(colors[:, 0]) # [V] | |
colored_count[invalid_index] = 0 | |
L_invalid = torch.index_select(L, 0, invalid_index) # sparse [IV, V] | |
total_colored = colored_count.sum() | |
coloring_round = 0 | |
stage = "uncolored" | |
from tqdm import tqdm | |
pbar = tqdm(miniters=100) | |
while stage == "uncolored" or coloring_round > 0: | |
new_color = torch.matmul(L_invalid, colors * colored_count[:, None]) # [IV, 3] | |
new_count = torch.matmul(L_invalid, colored_count)[:, None] # [IV, 1] | |
colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index]) | |
colored_count[invalid_index] = (new_count[:, 0] > 0).float() | |
new_total_colored = colored_count.sum() | |
if new_total_colored > total_colored: | |
total_colored = new_total_colored | |
coloring_round += 1 | |
else: | |
stage = "colored" | |
coloring_round -= 1 | |
pbar.update(1) | |
if coloring_round > 10000: | |
print("coloring_round > 10000, break") | |
break | |
assert not torch.isnan(colors).any() | |
meshes.textures = TexturesVertex(verts_features=[colors]) | |
return meshes | |
def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth") -> Meshes: | |
""" | |
Projects color from a given image onto a 3D mesh. | |
Args: | |
meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh. | |
image_list (PIL.Image.Image): List of images. | |
cameras_list (list): List of cameras. | |
camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35. | |
weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None. | |
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05. | |
resolution (int, optional): The resolution of the projection. Defaults to 1024. | |
device (str, optional): The device to use for computation. Defaults to "cuda". | |
reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None. | |
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True. | |
confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1. | |
complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False. | |
Returns: | |
Meshes: the colored mesh | |
""" | |
# 1. preprocess inputs | |
if image_list is None: | |
raise ValueError("image_list is None") | |
if cameras_list is None: | |
if len(image_list) == 8: | |
cameras_list = get_8view_cameras(device, focal=camera_focal) | |
elif len(image_list) == 6: | |
cameras_list = get_6view_cameras(device, focal=camera_focal) | |
elif len(image_list) == 4: | |
cameras_list = get_4view_cameras(device, focal=camera_focal) | |
elif len(image_list) == 2: | |
cameras_list = get_2view_cameras(device, focal=camera_focal) | |
else: | |
raise ValueError("cameras_list is None, and can not be guessed from image_list") | |
if weights is None: | |
if len(image_list) == 8: | |
weights = [2.0, 0.05, 0.2, 0.02, 1.0, 0.02, 0.2, 0.05] | |
elif len(image_list) == 6: | |
weights = [2.0, 0.05, 0.2, 1.0, 0.2, 0.05] | |
elif len(image_list) == 4: | |
weights = [2.0, 0.2, 1.0, 0.2] | |
elif len(image_list) == 2: | |
weights = [1.0, 1.0] | |
else: | |
raise ValueError("weights is None, and can not be guessed from image_list") | |
# 2. run projection | |
meshes = meshes.clone().to(device) | |
if weights is None: | |
weights = [1. for _ in range(len(cameras_list))] | |
assert len(cameras_list) == len(image_list) == len(weights) | |
original_color = meshes.textures.verts_features_packed() | |
assert not torch.isnan(original_color).any() | |
texture_counts = torch.zeros_like(original_color[..., :1]) | |
texture_values = torch.zeros_like(original_color) | |
max_texture_counts = torch.zeros_like(original_color[..., :1]) | |
max_texture_values = torch.zeros_like(original_color) | |
for camera, image, weight in zip(cameras_list, image_list, weights): | |
ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha) | |
if reweight_with_cosangle == "linear": | |
weight = (ret['cos_angles'].abs() * weight)[:, None] | |
elif reweight_with_cosangle == "square": | |
weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None] | |
if use_alpha: | |
weight = weight * ret['valid_alpha'] | |
assert weight.min() > -0.0001 | |
texture_counts[ret['valid_verts']] += weight | |
texture_values[ret['valid_verts']] += ret['valid_colors'] * weight | |
max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']]) | |
max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight) | |
# Method2 | |
texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values) | |
if below_confidence_strategy == "smooth": | |
texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values) | |
elif below_confidence_strategy == "original": | |
texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values) | |
else: | |
raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported") | |
assert not torch.isnan(texture_values).any() | |
meshes.textures = TexturesVertex(verts_features=[texture_values]) | |
if complete_unseen: | |
meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold]) | |
ret_mesh = meshes.detach() | |
del meshes | |
return ret_mesh | |
def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1): | |
ret = [] | |
for azim in azim_list: | |
R, T = look_at_view_transform(dist, 0, azim) | |
w2c = torch.cat([R[0].T, T[0, :, None]], dim=1) | |
cameras: OrthographicCameras = get_camera(w2c, focal_length=focal, cam_type='orthogonal').to(device) | |
ret.append(cameras) | |
return ret | |
def get_8view_cameras(device, focal=2/1.35): | |
return get_cameras_list(azim_list = [180, 225, 270, 315, 0, 45, 90, 135], device=device, focal=focal) | |
def get_6view_cameras(device, focal=2/1.35): | |
return get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=device, focal=focal) | |
def get_4view_cameras(device, focal=2/1.35): | |
return get_cameras_list(azim_list = [180, 270, 0, 90], device=device, focal=focal) | |
def get_2view_cameras(device, focal=2/1.35): | |
return get_cameras_list(azim_list = [180, 0], device=device, focal=focal) | |
def get_multiple_view_cameras(device, focal=2/1.35, offset=180, num_views=8, dist=1.1): | |
return get_cameras_list(azim_list = (np.linspace(0, 360, num_views+1)[:-1] + offset) % 360, device=device, focal=focal, dist=dist) | |
def align_with_alpha_bbox(source_img, target_img, final_size=1024): | |
# align source_img with target_img using alpha channel | |
# source_img and target_img are PIL.Image.Image | |
source_img = source_img.convert("RGBA") | |
target_img = target_img.convert("RGBA").resize((final_size, final_size)) | |
source_np = np.array(source_img) | |
target_np = np.array(target_img) | |
source_alpha = source_np[:, :, 3] | |
target_alpha = target_np[:, :, 3] | |
bbox_source_min, bbox_source_max = np.argwhere(source_alpha > 0).min(axis=0), np.argwhere(source_alpha > 0).max(axis=0) | |
bbox_target_min, bbox_target_max = np.argwhere(target_alpha > 0).min(axis=0), np.argwhere(target_alpha > 0).max(axis=0) | |
source_content = source_np[bbox_source_min[0]:bbox_source_max[0]+1, bbox_source_min[1]:bbox_source_max[1]+1, :] | |
# resize source_content to fit in the position of target_content | |
source_content = Image.fromarray(source_content).resize((bbox_target_max[1]-bbox_target_min[1]+1, bbox_target_max[0]-bbox_target_min[0]+1), resample=Image.BICUBIC) | |
target_np[bbox_target_min[0]:bbox_target_max[0]+1, bbox_target_min[1]:bbox_target_max[1]+1, :] = np.array(source_content) | |
return Image.fromarray(target_np) | |
def load_image_list_from_mvdiffusion(mvdiffusion_path, front_from_pil_or_path=None): | |
import os | |
image_list = [] | |
for dir in ['front', 'front_right', 'right', 'back', 'left', 'front_left']: | |
image_path = os.path.join(mvdiffusion_path, f"rgb_000_{dir}.png") | |
pil = Image.open(image_path) | |
if dir == 'front': | |
if front_from_pil_or_path is not None: | |
if isinstance(front_from_pil_or_path, str): | |
replace_pil = Image.open(front_from_pil_or_path) | |
else: | |
replace_pil = front_from_pil_or_path | |
# align replace_pil with pil using bounding box in alpha channel | |
pil = align_with_alpha_bbox(replace_pil, pil, final_size=1024) | |
image_list.append(pil) | |
return image_list | |
def load_image_list_from_img_grid(img_grid_path, resolution = 1024): | |
img_list = [] | |
grid = Image.open(img_grid_path) | |
w, h = grid.size | |
for row in range(0, h, resolution): | |
for col in range(0, w, resolution): | |
img_list.append(grid.crop((col, row, col + resolution, row + resolution))) | |
return img_list |