Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import List | |
from dataclasses import dataclass | |
from gradio_app.utils import rgba_to_rgb | |
from custum_3d_diffusion.trainings.config_classes import ExprimentConfig, TrainerSubConfig | |
from custum_3d_diffusion import modules | |
from custum_3d_diffusion.custum_modules.unifield_processor import AttnConfig, ConfigurableUNet2DConditionModel | |
from custum_3d_diffusion.trainings.base import BasicTrainer | |
from custum_3d_diffusion.trainings.utils import load_config | |
class FakeAccelerator: | |
device: torch.device = torch.device("cuda") | |
def init_trainers(cfg_path: str, weight_dtype: torch.dtype, extras: dict): | |
accelerator = FakeAccelerator() | |
cfg: ExprimentConfig = load_config(ExprimentConfig, cfg_path, extras) | |
init_config: AttnConfig = load_config(AttnConfig, cfg.init_config) | |
configurable_unet = ConfigurableUNet2DConditionModel(init_config, weight_dtype) | |
configurable_unet.enable_xformers_memory_efficient_attention() | |
trainer_cfgs: List[TrainerSubConfig] = [load_config(TrainerSubConfig, trainer) for trainer in cfg.trainers] | |
trainers: List[BasicTrainer] = [modules.find(trainer.trainer_type)(accelerator, None, configurable_unet, trainer.trainer, weight_dtype, i) for i, trainer in enumerate(trainer_cfgs)] | |
return trainers, configurable_unet | |
from gradio_app.utils import make_image_grid, split_image | |
def process_image(function, img, guidance_scale=2., merged_image=False, remove_bg=True): | |
from rembg import remove | |
if remove_bg: | |
img = remove(img) | |
img = rgba_to_rgb(img) | |
if merged_image: | |
img = split_image(img, rows=2) | |
images = function( | |
image=img, | |
guidance_scale=guidance_scale, | |
) | |
if len(images) > 1: | |
return make_image_grid(images, rows=2) | |
else: | |
return images[0] | |
def process_text(trainer, pipeline, img, guidance_scale=2.): | |
pipeline.cfg.validation_prompts = [img] | |
titles, images = trainer.batched_validation_forward(pipeline, guidance_scale=[guidance_scale]) | |
return images[0] | |
def load_pipeline(config_path, ckpt_path, pipeline_filter=lambda x: True, weight_dtype = torch.bfloat16): | |
training_config = config_path | |
load_from_checkpoint = ckpt_path | |
extras = [] | |
device = "cuda" | |
trainers, configurable_unet = init_trainers(training_config, weight_dtype, extras) | |
shared_modules = dict() | |
for trainer in trainers: | |
shared_modules = trainer.init_shared_modules(shared_modules) | |
if load_from_checkpoint is not None: | |
state_dict = torch.load(load_from_checkpoint) | |
configurable_unet.unet.load_state_dict(state_dict, strict=False) | |
# Move unet, vae and text_encoder to device and cast to weight_dtype | |
configurable_unet.unet.to(device, dtype=weight_dtype) | |
pipeline = None | |
trainer_out = None | |
for trainer in trainers: | |
if pipeline_filter(trainer.cfg.trainer_name): | |
pipeline = trainer.construct_pipeline(shared_modules, configurable_unet.unet) | |
pipeline.set_progress_bar_config(disable=False) | |
trainer_out = trainer | |
pipeline = pipeline.to(device) | |
return trainer_out, pipeline |