if __name__ == "__main__": import os import sys sys.path.append(os.curdir) if 'CUDA_VISIBLE_DEVICES' not in os.environ: os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['TRANSFORMERS_OFFLINE']='0' os.environ['DIFFUSERS_OFFLINE']='0' os.environ['HF_HUB_OFFLINE']='0' os.environ['GRADIO_ANALYTICS_ENABLED']='False' os.environ['HF_ENDPOINT']='https://hf-mirror.com' import torch torch.set_float32_matmul_precision('medium') torch.backends.cuda.matmul.allow_tf32 = True torch.set_grad_enabled(False) import gradio as gr import argparse from app.gradio_3dgen import create_ui as create_3d_ui # from app.gradio_3dgen_steps import create_step_ui from app.all_models import model_zoo _TITLE = '''Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image''' _DESCRIPTION = ''' [Project page](https://wukailu.github.io/Unique3D/) * High-fidelity and diverse textured meshes generated by Unique3D from single-view images. * The demo is still under construction, and more features are expected to be implemented soon. ''' def launch( port, listen=False, share=False, gradio_root="", ): model_zoo.init_models() with gr.Blocks( title=_TITLE, theme=gr.themes.Monochrome(), ) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) create_3d_ui("wkl") launch_args = {} if listen: launch_args["server_name"] = "0.0.0.0" demo.queue(default_concurrency_limit=1).launch( server_port=None if port == 0 else port, share=share, root_path=gradio_root if gradio_root != "" else None, # "/myapp" **launch_args, ) if __name__ == "__main__": parser = argparse.ArgumentParser() args, extra = parser.parse_known_args() parser.add_argument("--listen", action="store_true") parser.add_argument("--port", type=int, default=0) parser.add_argument("--share", action="store_true") parser.add_argument("--gradio_root", default="") args = parser.parse_args() launch( args.port, listen=args.listen, share=args.share, gradio_root=args.gradio_root, )