# modified from https://github.com/Profactor/continuous-remeshing import torch import numpy as np import trimesh from typing import Tuple def to_numpy(*args): def convert(a): if isinstance(a,torch.Tensor): return a.detach().cpu().numpy() assert a is None or isinstance(a,np.ndarray) return a return convert(args[0]) if len(args)==1 else tuple(convert(a) for a in args) def laplacian( num_verts:int, edges: torch.Tensor #E,2 ) -> torch.Tensor: #sparse V,V """create sparse Laplacian matrix""" V = num_verts E = edges.shape[0] #adjacency matrix, idx = torch.cat([edges, edges.fliplr()], dim=0).type(torch.long).T # (2, 2*E) ones = torch.ones(2*E, dtype=torch.float32, device=edges.device) A = torch.sparse.FloatTensor(idx, ones, (V, V)) #degree matrix deg = torch.sparse.sum(A, dim=1).to_dense() idx = torch.arange(V, device=edges.device) idx = torch.stack([idx, idx], dim=0) D = torch.sparse.FloatTensor(idx, deg, (V, V)) return D - A def _translation(x, y, z, device): return torch.tensor([[1., 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]],device=device) #4,4 def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True): """ see https://blog.csdn.net/wodownload2/article/details/85069240/ """ if l is None: l = -r if t is None: t = r if b is None: b = -t p = torch.zeros([4,4],device=device) p[0,0] = 2*n/(r-l) p[0,2] = (r+l)/(r-l) p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1) p[1,2] = (t+b)/(t-b) p[2,2] = -(f+n)/(f-n) p[2,3] = -(2*f*n)/(f-n) p[3,2] = -1 return p #4,4 def _orthographic(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True): if l is None: l = -r if t is None: t = r if b is None: b = -t o = torch.zeros([4,4],device=device) o[0,0] = 2/(r-l) o[0,3] = -(r+l)/(r-l) o[1,1] = 2/(t-b) * (-1 if flip_y else 1) o[1,3] = -(t+b)/(t-b) o[2,2] = -2/(f-n) o[2,3] = -(f+n)/(f-n) o[3,3] = 1 return o #4,4 def make_star_cameras(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'): if r is None: r = 1/distance A = az_count P = pol_count C = A * P phi = torch.arange(0,A) * (2*torch.pi/A) phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone() phi_rot[:,0,2,2] = phi.cos() phi_rot[:,0,2,0] = -phi.sin() phi_rot[:,0,0,2] = phi.sin() phi_rot[:,0,0,0] = phi.cos() theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2 theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone() theta_rot[0,:,1,1] = theta.cos() theta_rot[0,:,1,2] = -theta.sin() theta_rot[0,:,2,1] = theta.sin() theta_rot[0,:,2,2] = theta.cos() mv = torch.empty((C,4,4), device=device) mv[:] = torch.eye(4, device=device) mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3) mv = _translation(0, 0, -distance, device) @ mv return mv, _projection(r,device) def make_star_cameras_orthographic(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'): mv, _ = make_star_cameras(az_count,pol_count,distance,r,image_size,device) if r is None: r = 1 return mv, _orthographic(r,device) def make_sphere(level:int=2,radius=1.,device='cuda') -> Tuple[torch.Tensor,torch.Tensor]: sphere = trimesh.creation.icosphere(subdivisions=level, radius=1.0, color=None) vertices = torch.tensor(sphere.vertices, device=device, dtype=torch.float32) * radius faces = torch.tensor(sphere.faces, device=device, dtype=torch.long) return vertices,faces