File size: 1,383 Bytes
cd405a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import cv2
import gradio as gr
from tensorflow.keras.utils import img_to_array
from tensorflow.keras.models import load_model
import os

model = load_model(r'deepfake_detection_model.h5')

def predict_image(img):

    x = img_to_array(img)
    
    x = cv2.resize(x, (256, 256), interpolation=cv2.INTER_AREA)
    
    x /= 255.0

    x = np.expand_dims(x, axis=0)

    prediction = np.argmax(model.predict(x), axis=1)
    
    if prediction == 0:
        return 'Fake Image'
    else:
        return 'Real Image'


# Define the Gradio Interface with the desired title and description

description_html = """
<p>This model was trained by Rudolf Enyimba in partial fulfillment of the requirements 
of Solent University for the degree of MSc Artificial Intelligence and Data Science</p>
<p>This model was trained to detect deepfake images.</p>
<p>The model achieved an accuracy of <strong>91%</strong> on the test set.</p>
<p>Upload a face image or pick from the samples below to test model accuracy</p>
"""

# Define example images and their true labels for users to choose from
example_data = ['AI POPE.jpg']


gr.Interface(
    fn=predict_image,
    inputs="image",
    outputs=gr.Label(num_top_classes=15,min_width=360),
    title="Deepfake Image Detection(CNN)",
    description=description_html,
    allow_flagging='never',
    examples=example_data 
).launch()