X-prime commited on
Commit
0399d8b
·
verified ·
1 Parent(s): b070cf6

update app.y with openbiolmm-70B model

Browse files
Files changed (1) hide show
  1. app.py +79 -63
app.py CHANGED
@@ -1,64 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ # def respond(
11
+ # message,
12
+ # history: list[tuple[str, str]],
13
+ # system_message,
14
+ # max_tokens,
15
+ # temperature,
16
+ # top_p,
17
+ # ):
18
+ # messages = [{"role": "system", "content": system_message}]
19
+
20
+ # for val in history:
21
+ # if val[0]:
22
+ # messages.append({"role": "user", "content": val[0]})
23
+ # if val[1]:
24
+ # messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ # messages.append({"role": "user", "content": message})
27
+
28
+ # response = ""
29
+
30
+ # for message in client.chat_completion(
31
+ # messages,
32
+ # max_tokens=max_tokens,
33
+ # stream=True,
34
+ # temperature=temperature,
35
+ # top_p=top_p,
36
+ # ):
37
+ # token = message.choices[0].delta.content
38
+
39
+ # response += token
40
+ # yield response
41
+
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
  import gradio as gr
67
+ from transformers import AutoTokenizer, AutoModelForCausalLM
68
+
69
+ model_name = "openbiolabs/openbiollm-70b"
70
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
71
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
72
+
73
+ def generate_text(prompt):
74
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
75
+ outputs = model.generate(**inputs, max_new_tokens=200)
76
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
77
+
78
+ interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
79
+ interface.launch()
80
+