Spaces:
Runtime error
Runtime error
update app.y with openbiolmm-70B model
Browse files
app.py
CHANGED
@@ -1,64 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
""
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
# """
|
5 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
# """
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
# def respond(
|
11 |
+
# message,
|
12 |
+
# history: list[tuple[str, str]],
|
13 |
+
# system_message,
|
14 |
+
# max_tokens,
|
15 |
+
# temperature,
|
16 |
+
# top_p,
|
17 |
+
# ):
|
18 |
+
# messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
# for val in history:
|
21 |
+
# if val[0]:
|
22 |
+
# messages.append({"role": "user", "content": val[0]})
|
23 |
+
# if val[1]:
|
24 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
# messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
# response = ""
|
29 |
+
|
30 |
+
# for message in client.chat_completion(
|
31 |
+
# messages,
|
32 |
+
# max_tokens=max_tokens,
|
33 |
+
# stream=True,
|
34 |
+
# temperature=temperature,
|
35 |
+
# top_p=top_p,
|
36 |
+
# ):
|
37 |
+
# token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
# response += token
|
40 |
+
# yield response
|
41 |
+
|
42 |
+
|
43 |
+
# """
|
44 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
# """
|
46 |
+
# demo = gr.ChatInterface(
|
47 |
+
# respond,
|
48 |
+
# additional_inputs=[
|
49 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
# gr.Slider(
|
53 |
+
# minimum=0.1,
|
54 |
+
# maximum=1.0,
|
55 |
+
# value=0.95,
|
56 |
+
# step=0.05,
|
57 |
+
# label="Top-p (nucleus sampling)",
|
58 |
+
# ),
|
59 |
+
# ],
|
60 |
+
# )
|
61 |
+
|
62 |
+
|
63 |
+
# if __name__ == "__main__":
|
64 |
+
# demo.launch()
|
65 |
+
|
66 |
import gradio as gr
|
67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
68 |
+
|
69 |
+
model_name = "openbiolabs/openbiollm-70b"
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
71 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
72 |
+
|
73 |
+
def generate_text(prompt):
|
74 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
75 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
76 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
|
78 |
+
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
79 |
+
interface.launch()
|
80 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|