taesiri's picture
initial commit
5de430b
raw
history blame
9.37 kB
import json
import os
import random
import string
import time
import sys
import datasets
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import torch
import pickle
from PIL import Image
from torchvision import transforms
from huggingface_hub import HfApi, login
from torchvision.datasets import ImageFolder
from glob import glob
import gdown
import torchvision
import pandas as pd
from huggingface_hub import HfApi, login, snapshot_download
import matplotlib.pyplot as plt
import numpy as np
import csv
csv.field_size_limit(sys.maxsize)
np.random.seed(int(time.time()))
with open('./imagenet_hard_nearest_indices.pkl', 'rb') as f:
knn_results = pickle.load(f)
with open("imagenet-labels.json") as f:
wnid_to_label = json.load(f)
with open('id_to_label.json', 'r') as f:
id_to_labels = json.load(f)
bad_items = open('./ex2.txt', 'r').read().split('\n')
bad_items = [x.split('.')[0] for x in bad_items]
bad_items = [int(x) for x in bad_items if x != '']
# download and extract folders
gdown.cached_download(
url="https://huggingface.co/datasets/taesiri/imagenet_hard_review_samples/resolve/main/data.zip",
path="./data.zip",
quiet=False,
md5="8666a9b361f6eea79878be6c09701def",
)
# EXTRACT if needed
if not os.path.exists("./imagenet_traning_samples") or not os.path.exists("./knn_cache_for_imagenet_hard"):
torchvision.datasets.utils.extract_archive(
from_path="data.zip",
to_path="./",
remove_finished=False,
)
imagenet_hard = datasets.load_dataset("taesiri/imagenet-hard", split="validation")
def update_snapshot():
output_dir = snapshot_download(
repo_id="taesiri/imagenet_hard_review_data", allow_patterns="*.json", repo_type="dataset"
)
total_size = len(imagenet_hard)
files = glob(f"{output_dir}/*.json")
df = pd.DataFrame()
columns = ["id", "user_id", "time", "decision"]
rows = []
for file in files:
with open(file) as f:
data = json.load(f)
tdf = [data[x] for x in columns]
# add filename as a column
rows.append(tdf)
df = pd.DataFrame(rows, columns=columns)
return df, total_size
# df = update_snapshot()
NUMBER_OF_IMAGES = 1000
# Function to sample 10 ids based on their usage count
def sample_ids(df, total_size, sample_size):
id_counts = df['id'].value_counts().to_dict()
all_ids = bad_items
for id in all_ids:
if id not in id_counts:
id_counts[id] = 0
weights = [id_counts[id] for id in all_ids]
inverse_weights = [1 / (count + 1) for count in weights]
normalized_weights = [w / sum(inverse_weights) for w in inverse_weights]
sampled_ids = np.random.choice(all_ids, size=sample_size, replace=False, p=normalized_weights)
return sampled_ids
def generate_dataset():
df, total_size = update_snapshot()
random_indices = sample_ids(df, total_size, NUMBER_OF_IMAGES)
random_images = [imagenet_hard[int(i)]["image"] for i in random_indices]
random_gt_ids = [imagenet_hard[int(i)]["label"] for i in random_indices]
random_gt_labels = [imagenet_hard[int(x)]["english_label"] for x in random_indices]
data = []
for i, image in enumerate(random_images):
data.append(
{
"id": random_indices[i],
"image": image,
"correct_label": random_gt_labels[i],
"original_id": int(random_indices[i]),
}
)
return data
def string_to_image(text):
text = text.replace('_', ' ').lower().replace(', ', '\n')
# Create a blank white square image
img = np.ones((220, 75, 3))
# Create a figure and axis object
fig, ax = plt.subplots(figsize=(6, 2.25))
# Plot the blank white image
ax.imshow(img, extent=[0, 1, 0, 1])
# Set the text in the center
ax.text(0.5, 0.75, text, fontsize=18, ha='center', va='center')
# Remove the axis labels and ticks
ax.set_xticks([])
ax.set_yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
# Remove the axis spines
for spine in ax.spines.values():
spine.set_visible(False)
# Return the figure
return fig
def label_dist_of_nns(qid):
with open('./trainingset_filenames.json', 'r') as f:
trainingset_filenames = json.load(f)
nns = knn_results[qid][:15]
labels = [wnid_to_label[trainingset_filenames[f"{x}"]] for x in nns]
label_counts = {x: labels.count(x) for x in set(labels)}
# sort by count
label_counts = {k: v for k, v in sorted(label_counts.items(), key=lambda item: item[1], reverse=True)}
# percetage
label_counts = {k: v/len(labels) for k, v in label_counts.items()}
return label_counts
from glob import glob
all_samples = glob('./imagenet_traning_samples/*.JPEG')
qid_to_sample = {int(x.split('/')[-1].split('.')[0].split('_')[0]): x for x in all_samples}
def get_training_samples(qid):
labels_id = imagenet_hard[int(qid)]['label']
samples = [qid_to_sample[x] for x in labels_id]
return samples
knn_cache_path = "knn_cache_for_imagenet_hard"
imagenet_training_samples_path = "imagenet_traning_samples"
def load_sample(data, current_index):
image_id = data[current_index]["id"]
qimage = data[current_index]["image"]
neighbors_path = os.path.join(knn_cache_path, f"{image_id}.JPEG")
neighbors_image = Image.open(neighbors_path).convert('RGB')
labels = data[current_index]["correct_label"]
return qimage, neighbors_image, labels
# return qimage, neighbors_image, training_samples_image
def update_app(decision, data, current_index, history, username):
if current_index == -1:
data = generate_dataset()
nns = {}
if current_index>=0 and current_index < NUMBER_OF_IMAGES-1:
time_stamp = int(time.time())
image_id = data[current_index]["id"]
# convert to percentage
dicision_dict = {
"id": int(image_id),
"user_id": username,
"time": time_stamp,
"decision": decision,
}
# upload the decision to the server
temp_filename = f"results_{username}_{time_stamp}.json"
# convert decision_dict to json and save it on the disk
with open(temp_filename, "w") as f:
json.dump(dicision_dict, f)
api = HfApi()
api.upload_file(
path_or_fileobj=temp_filename,
path_in_repo=temp_filename,
repo_id="taesiri/imagenet_hard_review_data",
repo_type="dataset",
)
os.remove(temp_filename)
elif current_index == NUMBER_OF_IMAGES-1:
return None, None, None, current_index, history, data, None, None
current_index += 1
qimage, neighbors_image, labels = load_sample(data, current_index)
image_id = data[current_index]["id"]
training_samples_image = get_training_samples(image_id)
training_samples_image = [Image.open(x).convert('RGB') for x in training_samples_image]
nns = label_dist_of_nns(image_id)
# labels is a list of labels, conver it to a string
labels = ", ".join(labels)
label_plot = string_to_image(labels)
return qimage, label_plot, neighbors_image, current_index, history, data, nns, training_samples_image
newcss = '''
#query_image{
height: auto !important;
}
#nn_gallery {
height: auto !important;
}
#sample_gallery {
height: auto !important;
}
'''
with gr.Blocks(css=newcss) as demo:
data_gr = gr.State({})
current_index = gr.State(-1)
history = gr.State({})
gr.Markdown("# Cleaning ImageNet-Hard!")
random_str = "".join(
random.choice(string.ascii_lowercase + string.digits) for _ in range(5)
)
username = gr.Textbox(label="Username", value=f"user-{random_str}")
with gr.Column():
with gr.Row():
accept_btn = gr.Button(value="Accept")
myabe_btn = gr.Button(value="Not Sure!")
reject_btn = gr.Button(value="Reject")
with gr.Row():
query_image = gr.Image(type="pil", label="Query", elem_id="query_image")
with gr.Column():
label_plot = gr.Plot(label='Is this a correct label for this image?', type='fig')
training_samples = gr.Gallery(type="pil", label="Training samples" , elem_id="sample_gallery")
with gr.Column():
gr.Markdown("## Nearest Neighbors Analysis of the Query (ResNet-50)")
nn_labels = gr.Label(label="NN-Labels")
neighbors_image = gr.Image(type="pil", label="Nearest Neighbors", elem_id="nn_gallery")
accept_btn.click(
update_app,
inputs=[accept_btn, data_gr, current_index, history, username],
outputs=[query_image, label_plot, neighbors_image, current_index, history, data_gr, nn_labels, training_samples]
)
myabe_btn.click(
update_app,
inputs=[myabe_btn, data_gr, current_index, history, username],
outputs=[query_image, label_plot, neighbors_image, current_index, history, data_gr, nn_labels, training_samples]
)
reject_btn.click(
update_app,
inputs=[reject_btn, data_gr, current_index, history, username],
outputs=[query_image, label_plot, neighbors_image, current_index, history, data_gr, nn_labels, training_samples]
)
demo.launch()