Spaces:
Paused
Paused
remove knn
Browse files
app.py
CHANGED
@@ -191,18 +191,14 @@ def load_sample(data, current_index):
|
|
191 |
image_id = data[current_index]["id"]
|
192 |
qimage = data[current_index]["image"]
|
193 |
|
194 |
-
neighbors_path = os.path.join(knn_cache_path, f"{image_id}.JPEG")
|
195 |
-
neighbors_image = Image.open(neighbors_path).convert('RGB')
|
196 |
-
|
197 |
labels = data[current_index]["correct_label"]
|
198 |
-
return qimage,
|
199 |
# return qimage, neighbors_image, training_samples_image
|
200 |
|
201 |
|
202 |
def update_app(decision, data, current_index, history, username):
|
203 |
if current_index == -1:
|
204 |
data = generate_dataset()
|
205 |
-
nns = {}
|
206 |
|
207 |
if current_index>=0 and current_index < NUMBER_OF_IMAGES-1:
|
208 |
time_stamp = int(time.time())
|
@@ -233,20 +229,19 @@ def update_app(decision, data, current_index, history, username):
|
|
233 |
os.remove(temp_filename)
|
234 |
|
235 |
elif current_index == NUMBER_OF_IMAGES-1:
|
236 |
-
return None, None,
|
237 |
|
238 |
current_index += 1
|
239 |
-
qimage,
|
240 |
image_id = data[current_index]["id"]
|
241 |
training_samples_image = get_training_samples(image_id)
|
242 |
training_samples_image = [Image.open(x).convert('RGB') for x in training_samples_image]
|
243 |
-
nns = label_dist_of_nns(image_id)
|
244 |
|
245 |
# labels is a list of labels, conver it to a string
|
246 |
labels = ", ".join(labels)
|
247 |
label_plot = string_to_image(labels)
|
248 |
|
249 |
-
return qimage, label_plot,
|
250 |
|
251 |
|
252 |
newcss = '''
|
@@ -286,26 +281,26 @@ with gr.Blocks(css=newcss) as demo:
|
|
286 |
with gr.Column():
|
287 |
label_plot = gr.Plot(label='Is this a correct label for this image?', type='fig')
|
288 |
training_samples = gr.Gallery(type="pil", label="Training samples" , elem_id="sample_gallery")
|
289 |
-
with gr.Column():
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
|
294 |
accept_btn.click(
|
295 |
update_app,
|
296 |
inputs=[accept_btn, data_gr, current_index, history, username],
|
297 |
-
outputs=[query_image, label_plot,
|
298 |
)
|
299 |
myabe_btn.click(
|
300 |
update_app,
|
301 |
inputs=[myabe_btn, data_gr, current_index, history, username],
|
302 |
-
outputs=[query_image, label_plot,
|
303 |
)
|
304 |
|
305 |
reject_btn.click(
|
306 |
update_app,
|
307 |
inputs=[reject_btn, data_gr, current_index, history, username],
|
308 |
-
outputs=[query_image, label_plot,
|
309 |
)
|
310 |
|
311 |
demo.launch()
|
|
|
191 |
image_id = data[current_index]["id"]
|
192 |
qimage = data[current_index]["image"]
|
193 |
|
|
|
|
|
|
|
194 |
labels = data[current_index]["correct_label"]
|
195 |
+
return qimage, labels
|
196 |
# return qimage, neighbors_image, training_samples_image
|
197 |
|
198 |
|
199 |
def update_app(decision, data, current_index, history, username):
|
200 |
if current_index == -1:
|
201 |
data = generate_dataset()
|
|
|
202 |
|
203 |
if current_index>=0 and current_index < NUMBER_OF_IMAGES-1:
|
204 |
time_stamp = int(time.time())
|
|
|
229 |
os.remove(temp_filename)
|
230 |
|
231 |
elif current_index == NUMBER_OF_IMAGES-1:
|
232 |
+
return None, None, current_index, history, data, None
|
233 |
|
234 |
current_index += 1
|
235 |
+
qimage, labels = load_sample(data, current_index)
|
236 |
image_id = data[current_index]["id"]
|
237 |
training_samples_image = get_training_samples(image_id)
|
238 |
training_samples_image = [Image.open(x).convert('RGB') for x in training_samples_image]
|
|
|
239 |
|
240 |
# labels is a list of labels, conver it to a string
|
241 |
labels = ", ".join(labels)
|
242 |
label_plot = string_to_image(labels)
|
243 |
|
244 |
+
return qimage, label_plot, current_index, history, data, training_samples_image
|
245 |
|
246 |
|
247 |
newcss = '''
|
|
|
281 |
with gr.Column():
|
282 |
label_plot = gr.Plot(label='Is this a correct label for this image?', type='fig')
|
283 |
training_samples = gr.Gallery(type="pil", label="Training samples" , elem_id="sample_gallery")
|
284 |
+
# with gr.Column():
|
285 |
+
# gr.Markdown("## Nearest Neighbors Analysis of the Query (ResNet-50)")
|
286 |
+
# nn_labels = gr.Label(label="NN-Labels")
|
287 |
+
# neighbors_image = gr.Image(type="pil", label="Nearest Neighbors", elem_id="nn_gallery")
|
288 |
|
289 |
accept_btn.click(
|
290 |
update_app,
|
291 |
inputs=[accept_btn, data_gr, current_index, history, username],
|
292 |
+
outputs=[query_image, label_plot, current_index, history, data_gr, training_samples]
|
293 |
)
|
294 |
myabe_btn.click(
|
295 |
update_app,
|
296 |
inputs=[myabe_btn, data_gr, current_index, history, username],
|
297 |
+
outputs=[query_image, label_plot, current_index, history, data_gr, training_samples]
|
298 |
)
|
299 |
|
300 |
reject_btn.click(
|
301 |
update_app,
|
302 |
inputs=[reject_btn, data_gr, current_index, history, username],
|
303 |
+
outputs=[query_image, label_plot, current_index, history, data_gr, training_samples]
|
304 |
)
|
305 |
|
306 |
demo.launch()
|