Spaces:
Sleeping
Sleeping
File size: 33,264 Bytes
711211a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import copy
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
import numpy as np
from torch import nn
from transformers import OwlViTConfig
# from transformers.models.owlvit.modeling_owlvit import OwlViTVisionTransformer
class OwlViTBoxPredictionHead(nn.Module):
def __init__(self, config: OwlViTConfig):
super().__init__()
width = config.vision_config.hidden_size
self.dense0 = nn.Linear(width, width)
self.dense1 = nn.Linear(width, width)
self.dense2 = nn.Linear(width, width)
self.dense3 = nn.Linear(width, width)
self.gelu = nn.GELU()
self.dense4 = nn.Linear(width, 4)
def forward(self, image_features: torch.Tensor) -> torch.FloatTensor:
output = self.dense0(image_features)
output = self.gelu(output)
output = self.dense1(output)
output = self.gelu(output)
output = self.dense2(output)
output = self.gelu(output)
output = self.dense3(output)
output = self.gelu(output)
output = self.dense4(output)
output = self.gelu(output)
return output
class OwlViTClassPredictionHead(nn.Module):
def __init__(self, config: OwlViTConfig):
super().__init__()
out_dim = config.text_config.hidden_size
self.query_dim = config.vision_config.hidden_size
self.dense0 = nn.Linear(self.query_dim, out_dim)
self.logit_shift = nn.Linear(self.query_dim, 1)
self.logit_scale = nn.Linear(self.query_dim, 1)
self.elu = nn.ELU()
def forward(
self,
image_embeds: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor],
query_mask: Optional[torch.Tensor],
) -> Tuple[torch.FloatTensor]:
image_class_embeds = self.dense0(image_embeds)
if query_embeds is None:
device = image_class_embeds.device
batch_size, num_patches = image_class_embeds.shape[:2]
pred_logits = torch.zeros((batch_size, num_patches, self.query_dim)).to(device)
return (pred_logits, image_class_embeds)
# Normalize image and text features
image_class_embeds = F.normalize(image_class_embeds, dim=-1) + 1e-6
query_embeds = F.normalize(query_embeds, dim=-1) + 1e-6
# Get class predictions
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
# Apply a learnable shift and scale to logits
logit_shift = self.logit_shift(image_embeds)
logit_scale = self.logit_scale(image_embeds)
logit_scale = self.elu(logit_scale) + 1
pred_logits = (pred_logits + logit_shift) * logit_scale
if query_mask is not None:
if query_mask.ndim > 1:
query_mask = torch.unsqueeze(query_mask, dim=-2)
pred_logits = pred_logits.to(torch.float64)
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits)
pred_logits = pred_logits.to(torch.float32)
return (pred_logits, image_class_embeds)
class OwlViTPredictionHead(nn.Module):
def __init__(self, config: OwlViTConfig, num_classes: int, finetuned: bool):
super().__init__()
out_dim = config.text_config.hidden_size
self.query_dim = config.vision_config.hidden_size
self.finetuned = finetuned
self.num_classes = num_classes
self.mlp_image = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=self.query_dim, out_features=self.query_dim),
nn.GELU(),
nn.Linear(in_features=self.query_dim, out_features=self.query_dim),
nn.GELU(),
nn.Linear(in_features=self.query_dim, out_features=out_dim),
nn.GELU(),
)
# if self.finetuned:
# self.cls_head = nn.Sequential(
# nn.GELU(),
# nn.Linear(in_features=out_dim, out_features=out_dim),
# nn.GELU()
# )
def forward(self,
image_embeds: torch.FloatTensor,
query_embeds: torch.FloatTensor,
topk_idxs: torch.FloatTensor,
) -> Tuple[torch.FloatTensor]:
# Get class predictions: topk_idxs (batch_size, n_parts, 1), one_hot (batch_size, n_parts, n_patches*n_patches)
topk_idxs = torch.swapaxes(topk_idxs, 1, 2)
one_hot = torch.zeros(topk_idxs.shape[0], topk_idxs.shape[1], image_embeds.shape[1]).to(image_embeds.device).scatter_(2, topk_idxs, 1)
batch_size, n_parts = one_hot.shape[0], one_hot.shape[1]
# (batch_size, n_parts, 3600, 1) * (batch_size, 1, 3600, 1024) = (batch_size, n_parts, 3600, 1024).sum(dim=-2)
image_embeds = (one_hot.unsqueeze(-1) * image_embeds.unsqueeze(1)).sum(dim=-2)
# image_embeds = self.dense0(image_embeds) # (batch_size, n_patches, 1024) --> (.., .., 768)
image_embeds = self.mlp_image(image_embeds.view(-1, image_embeds.shape[-1])).view(batch_size, n_parts, -1)
query_embeds = query_embeds.view(batch_size, -1, query_embeds.shape[-1])
# if self.finetuned:
# image_embeds = self.cls_head(image_embeds)
# query_embeds = query_embeds.view(batch_size, -1, query_embeds.shape[-1])
# Normalize image and text features
image_embeds = F.normalize(image_embeds, dim=-1) + 1e-6 # (batch_size, n_parts, 768)
query_embeds = F.normalize(query_embeds, dim=-1) + 1e-6 # (batch_size, num_classes * n_parts, 768)
# Shape: torch.Size([bs, num_boxes, num_classes * num_parts])
image_text_logits = torch.einsum('bnd, bid -> bni', image_embeds, query_embeds)
image_text_logits_reshaped = image_text_logits.view(-1, image_text_logits.shape[-1])
# Shape: (bs, num_classes * num_parts, num_boxes) --> (bs, num_classes, num_parts, num_boxes)
pred_logits = image_text_logits.swapaxes(axis0=1, axis1=2).view(batch_size, self.num_classes, n_parts, -1)
pred_logits = torch.diagonal(pred_logits, dim1=-2, dim2=-1) # --> torch.Size([bs, num_classes, 12])
#DEBUG: try add sigmoid here to see if it helps. PEIJIE: It does not help.
# pred_logits = pred_logits.sigmoid()
# pred_logits = abs(pred_logits) # for debugging
final_pred_logits = torch.sum(pred_logits, dim=-1)
return (image_text_logits_reshaped, final_pred_logits, pred_logits)
class OwlViTForClassification(nn.Module):
config_class = OwlViTConfig
def __init__(self, owlvit_det_model, num_classes, weight_dict, device, freeze_box_heads=False, train_box_heads_only=False, network_type=None, logits_from_teacher=False, finetuned: bool = False, custom_box_head: bool = False):
super(OwlViTForClassification, self).__init__()
self.config = owlvit_det_model.config
self.num_classes = num_classes
self.num_parts = 12
self.device = device
self.sigmoid = nn.Sigmoid()
self.ce_loss = torch.nn.CrossEntropyLoss()
# Use CE loss for classification OR only train with contrastive loss
self.network_type = network_type
self.logits_from_teacher = logits_from_teacher
# Initialize OwlViT model from the teacher model
self.owlvit = copy.deepcopy(owlvit_det_model.owlvit)
self.layer_norm = copy.deepcopy(owlvit_det_model.layer_norm)
# For image-level classification
self.cls_head = OwlViTPredictionHead(self.config, self.num_classes, finetuned=finetuned)
# For box prediction
if custom_box_head:
self.box_head = OwlViTBoxPredictionHead(self.config)
else:
self.box_head = copy.deepcopy(owlvit_det_model.box_head)
# For box-level classification
# Why don't just:
# self.class_head = copy.deepcopy(owlvit_det_model.class_head)
self.class_head = OwlViTClassPredictionHead(self.config)
self.class_head.dense0.load_state_dict(owlvit_det_model.class_head.dense0.state_dict())
self.class_head.logit_shift.load_state_dict(owlvit_det_model.class_head.logit_shift.state_dict())
self.class_head.logit_scale.load_state_dict(owlvit_det_model.class_head.logit_scale.state_dict())
# OwlViT: set equal weights for the bounding box, gIoU and classification losses
# self.matcher = DetrHungarianMatcher(class_cost=1, bbox_cost=1, giou_cost=1)
# Losses for the criterion in DETR/OwlViT
self.weight_dict = weight_dict
losses = ["cardinality"]
losses += ["boxes"] if weight_dict["loss_bbox"] > 0 else []
losses += ["labels"] if weight_dict["loss_ce"] > 0 else []
self.criterion = DetrLoss(
matcher=None,
num_parts=self.num_parts,
eos_coef=0.1, # Following facebook/detr-resnet-50
losses=losses,
)
self.freeze_parameters(freeze_box_heads, train_box_heads_only)
del owlvit_det_model
def freeze_parameters(self, freeze_box_heads, train_box_heads_only):
# OwlViT's text encoder is frozen by default
for param in self.owlvit.text_model.parameters():
param.requires_grad = False
for param in self.owlvit.text_projection.parameters():
param.requires_grad = False
# SKIP finetuning box heads
if freeze_box_heads:
for param in self.box_head.parameters():
param.requires_grad = False
for param in self.class_head.parameters():
param.requires_grad = False
# SKIP finetuning vision encoder and MLP head for classification --> Adjust weights of box heads only
if train_box_heads_only:
for param in self.owlvit.parameters():
param.requires_grad = False
for param in self.layer_norm.parameters():
param.requires_grad = False
for param in self.cls_head.parameters():
param.requires_grad = False
def update_num_classes(self, num_classes):
self.num_classes = num_classes
self.cls_head.num_classes = num_classes
def image_text_embedder(self,
input_ids: torch.Tensor,
pixel_values: torch.FloatTensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Tuple[torch.FloatTensor]:
# Encode text and image
outputs = self.owlvit(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
# Get image embeddings
last_hidden_state = outputs.vision_model_output[0] # 0: last_hidden_state; 1: pooled_output
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state)
# Resize class token
new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0)))
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size = (
image_embeds.shape[0],
int(np.sqrt(image_embeds.shape[1])),
int(np.sqrt(image_embeds.shape[1])),
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
text_embeds = outputs[-4]
return (text_embeds, image_embeds, outputs)
def image_embedder(
self,
pixel_values: torch.FloatTensor
) -> Tuple[torch.FloatTensor]:
# Get OwlViTModel vision embeddings (same as CLIP)
vision_outputs = self.owlvit.vision_model(pixel_values=pixel_values, return_dict=True)
# Apply post_layernorm to last_hidden_state, return non-projected output
last_hidden_state = vision_outputs[0]
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state)
# Resize class token
new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0)))
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size = (
image_embeds.shape[0],
int(np.sqrt(image_embeds.shape[1])),
int(np.sqrt(image_embeds.shape[1])),
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
return (image_embeds, vision_outputs)
def normalize_grid_corner_coordinates(self, feature_map: torch.FloatTensor):
# Computes normalized xy corner coordinates from feature_map.
if not feature_map.ndim == 4:
raise ValueError("Expected input shape is [batch_size, num_patches, num_patches, hidden_dim]")
device = feature_map.device
num_patches = feature_map.shape[1]
box_coordinates = np.stack(np.meshgrid(np.arange(1, num_patches + 1), np.arange(1, num_patches + 1)), axis=-1).astype(np.float32)
box_coordinates /= np.array([num_patches, num_patches], np.float32)
# Flatten (h, w, 2) -> (h*w, 2)
box_coordinates = box_coordinates.reshape(box_coordinates.shape[0] * box_coordinates.shape[1], box_coordinates.shape[2])
box_coordinates = torch.from_numpy(box_coordinates).to(device)
return box_coordinates
def compute_box_bias(self, feature_map: torch.FloatTensor) -> torch.FloatTensor:
# The box center is biased to its position on the feature grid
box_coordinates = self.normalize_grid_corner_coordinates(feature_map)
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)
# Unnormalize xy
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)
# The box size is biased to the patch size
box_size = torch.full_like(box_coord_bias, 1.0 / feature_map.shape[-2])
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)
# Compute box bias
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
return box_bias
def box_predictor(
self,
image_feats: torch.FloatTensor,
feature_map: torch.FloatTensor,
) -> torch.FloatTensor:
"""
Args:
image_feats:
Features extracted from the image, returned by the `image_text_embedder` method.
feature_map:
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
Returns:
pred_boxes:
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
"""
# Bounding box detection head [batch_size, num_boxes, 4].
pred_boxes = self.box_head(image_feats)
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
pred_boxes += self.compute_box_bias(feature_map)
pred_boxes = self.sigmoid(pred_boxes)
return pred_boxes
def class_predictor(
self,
image_feats: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor] = None,
query_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor]:
"""
Args:
image_feats:
Features extracted from the `image_text_embedder`.
query_embeds:
Text query embeddings.
query_mask:
Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
"""
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)
return (pred_logits, image_class_embeds)
def _get_text_query_mask(self, text_inputs, text_embeds, batch_size: int):
# Embed images and text queries
input_ids = text_inputs["input_ids"]
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim]
max_text_queries = input_ids.shape[0] // batch_size
text_embeds = text_embeds.reshape(batch_size, max_text_queries, text_embeds.shape[-1])
# If first token is 0, then this is a padded query [batch_size, num_queries].
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1])
query_mask = input_ids[..., 0] > 0
return query_mask, text_embeds
def forward(self, image_inputs, text_inputs_parts, text_embeds, targets: dict = None):
# Store outputs for computing losses
loss_dict = {}
if not isinstance(image_inputs, torch.Tensor):
feature_map, _ = self.image_embedder(pixel_values = image_inputs['pixel_values'])
else:
feature_map = image_inputs
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
if self.logits_from_teacher:
teacher_boxes_logits = torch.stack([target["logits"] for target in targets], dim=0).to(self.device)
topk_scores, topk_idxs = torch.topk(teacher_boxes_logits, k=1, dim=1)
else:
text_embeds_parts = self.owlvit.get_text_features(**text_inputs_parts)
# # Embed images and text queries
query_mask, text_embeds_parts = self._get_text_query_mask(text_inputs_parts, text_embeds_parts, batch_size)
# Predict object classes [batch_size, num_patches, num_queries+1]
pred_logits_parts, class_embeds = self.class_predictor(image_feats, text_embeds_parts, query_mask)
# Predict object boxes
pred_boxes = self.box_predictor(image_feats, feature_map)
# Get the top-1 predictions
scores = self.sigmoid(pred_logits_parts)
topk_scores, topk_idxs = torch.topk(scores, k=1, dim=1)
mapping_indices = [(selected_indices, torch.tensor(list(range(self.num_parts))).to(self.device)) for selected_indices in topk_idxs.squeeze(1)]
# get the selected_indexs for mapping_indices
selected_idxs = torch.stack([item[0].cpu() for item in mapping_indices])
loss_dict["pred_boxes"] = torch.gather(pred_boxes.cpu(), 1, selected_idxs.unsqueeze(-1).expand(*selected_idxs.shape, 4))
if targets is not None:
# ----------------------------------------------------------------------------------------
# Computing box + class + symmetric losses for box selection
# ----------------------------------------------------------------------------------------
outputs_loss = {}
outputs_loss["logits"] = pred_logits_parts
outputs_loss["pred_boxes"] = pred_boxes
# Compute box + class losses
loss_dict = self.criterion(outputs_loss, targets, mapping_indices)
# Compute symmetric loss to get rid of the teacher model
logits_per_image = torch.softmax(pred_logits_parts, dim=1)
logits_per_text = torch.softmax(pred_logits_parts, dim=-1)
# For getting rid of the teacher model
if self.weight_dict["loss_sym_box_label"] > 0:
sym_loss_box_label = self.loss_symmetric(logits_per_image, logits_per_text, teacher_boxes_logits)
loss_dict["loss_sym_box_label"] = sym_loss_box_label
# ----------------------------------------------------------------------------------------
# Predict image-level classes (batch_size, num_patches, num_queries)
image_text_logits, pred_logits, part_logits = self.cls_head(image_feats, text_embeds, topk_idxs)
if self.weight_dict["loss_xclip"] > 0:
targets_cls = torch.tensor([target["targets_cls"] for target in targets]).unsqueeze(1).to(self.device)
if self.network_type == "classification":
one_hot = torch.zeros_like(pred_logits).scatter(1, targets_cls, 1).to(self.device)
cls_loss = self.ce_loss(pred_logits, one_hot)
loss_dict["loss_xclip"] = cls_loss
else:
# TODO: Need a linear classifier for this approach
# Compute symmetric loss for part-descriptor contrastive learning
logits_per_image = torch.softmax(image_text_logits, dim=0)
logits_per_text = torch.softmax(image_text_logits, dim=-1)
sym_loss = self.loss_symmetric(logits_per_image, logits_per_text, targets_cls)
loss_dict["loss_xclip"] = sym_loss
return pred_logits, part_logits, loss_dict
def loss_symmetric(self, text_logits: torch.Tensor, image_logits: torch.Tensor, targets: torch.Tensor, box_labels: torch.Tensor = None) -> torch.Tensor:
# text/image logits (batch_size*num_boxes, num_classes*num_descs): The logits that softmax over text descriptors or boxes
# targets (batch_size, 1): The ground truth label of box-text pair for classification OR
# targets (batch_size, all_boxes, num_parts): The ground truth label of box-text pair for box selection
# box_labels (batch_size, num_boxes), 0 for no box, 1 for box
assert text_logits.shape == image_logits.shape
# For image classification
if image_logits.shape != targets.shape:
batch_size = targets.shape[0]
# get the matching labels (bs * 12, num_classes * num_parts)
default_box_labels = torch.kron(torch.ones(batch_size, self.num_classes), torch.eye(self.num_parts)).to(self.device)
if box_labels is None:
box_labels = default_box_labels.clone()
else:
# (batch_size, num_boxes) -> (bs * num_boxes, num_classes * num_parts)
box_labels = box_labels.view(-1, 1) * default_box_labels
# Create one-hot encoding of targets; matching_labels shape: (bs * 12, num_classes * num_parts)
target_one_hot = torch.zeros(batch_size, self.num_classes).to(self.device).scatter(1, targets.view(-1, 1), 1)
target_one_hot = torch.kron(target_one_hot, torch.ones(self.num_parts, self.num_parts).to(self.device))
matching_labels = target_one_hot * box_labels
else:
# For box selection: matching_labels shape: (bs, 576, num_parts)
values, indices = torch.max(targets, dim=1)
matching_labels = torch.zeros_like(targets).scatter(1, indices.unsqueeze(1), 1)
loss_i = F.binary_cross_entropy_with_logits(image_logits, matching_labels, reduction='mean')
loss_t = F.binary_cross_entropy_with_logits(text_logits, matching_labels, reduction='mean')
sym_loss = (loss_i + loss_t).mean()
return sym_loss
class DetrLoss(nn.Module):
"""
This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1)
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
of matched ground-truth / prediction (supervise class and box).
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes`
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
(`max_obj_id` + 1). For more details on this, check the following discussion
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223"
Args:
matcher (`DetrHungarianMatcher`):
Module able to compute a matching between targets and proposals.
num_parts (`int`):
Number of object categories, omitting the special no-object category.
eos_coef (`float`):
Relative classification weight applied to the no-object category.
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
"""
def __init__(self, matcher, num_parts, eos_coef, losses):
super().__init__()
self.matcher = matcher
self.num_parts = num_parts
self.eos_coef = eos_coef
self.losses = losses
# empty_weight = torch.ones(self.num_parts + 1)
empty_weight = torch.ones(self.num_parts)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
[nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
# target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
# target_classes = torch.full(source_logits.shape[:2], self.num_parts, dtype=torch.int64, device=source_logits.device)
# target_classes[idx] = target_classes_o
source_logits = source_logits[idx].view(len(indices), -1, self.num_parts)
target_classes = torch.stack([t["class_labels"][J] for t, (_, J) in zip(targets, indices)], dim=0)
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
losses = {}
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)))
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def loss_masks(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the masks: the focal loss and the dice loss.
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
"""
if "pred_masks" not in outputs:
raise KeyError("No predicted masks found in outputs")
source_idx = self._get_source_permutation_idx(indices)
target_idx = self._get_target_permutation_idx(indices)
source_masks = outputs["pred_masks"]
source_masks = source_masks[source_idx]
masks = [t["masks"] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(source_masks)
target_masks = target_masks[target_idx]
# upsample predictions to the target size
source_masks = nn.functional.interpolate(
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
)
source_masks = source_masks[:, 0].flatten(1)
target_masks = target_masks.flatten(1)
target_masks = target_masks.view(source_masks.shape)
losses = {
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
}
return losses
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
"masks": self.loss_masks,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
def forward(self, outputs, targets, indices):
"""
This performs the loss computation.
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
# ThangPM: Do NOT use bipartite matching --> Use the boxes selected by argmax for computing symmetric loss
# Retrieve the matching between the outputs of the last layer and the targets
# indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
# (Niels): comment out function below, distributed training to be added
# if is_dist_avail_and_initialized():
# torch.distributed.all_reduce(num_boxes)
# (Niels) in original implementation, num_boxes is divided by get_world_size()
num_boxes = torch.clamp(num_boxes, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
# indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses |