Spaces:
Runtime error
Runtime error
File size: 6,852 Bytes
aeed1bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
from rf_models import RF_model
from sd_models import SD_model
import torch
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
import torch.nn.functional as F
from diffusers import StableDiffusionXLImg2ImgPipeline
import time
import copy
import numpy as np
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe = pipe.to("cuda")
global model
global base_model
global img
def set_model(model_id):
global model
if model_id == "InstaFlow-0.9B":
model = RF_model("./instaflow_09b.pt")
elif model_id == "InstaFlow-1.7B":
model = RF_model("./instaflow_17b.pt")
else:
raise NotImplementedError
print('Finished Loading Model!')
def set_base_model(model_id):
global base_model
if model_id == "runwayml/stable-diffusion-v1-5":
base_model = SD_model("runwayml/stable-diffusion-v1-5")
else:
raise NotImplementedError
print('Finished Loading Base Model!')
def set_new_latent_and_generate_new_image(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
print('Generate with input seed')
global model
global img
seed = int(seed)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
#print('time consumption:', time.time() - t_s)
inf_time = time.time() - t_s
img = copy.copy(new_image[0])
return new_image[0], inf_time
def set_new_latent_and_generate_new_image_with_base_model(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
print('Generate with input seed')
global base_model
global img
negative_prompt=""
seed = int(seed)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
new_image = base_model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
#print('time consumption:', time.time() - t_s)
inf_time = time.time() - t_s
img = copy.copy(new_image[0])
return new_image[0], inf_time
def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
print('Generate with a random seed')
global model
global img
seed = np.random.randint(0, 2**32)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
#print('time consumption:', time.time() - t_s)
inf_time = time.time() - t_s
img = copy.copy(new_image[0])
return new_image[0], seed, inf_time
def refine_image_512(prompt):
print('Refine with SDXL-Refiner (512)')
global img
t_s = time.time()
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
new_image = pipe(prompt, image=img).images[0]
print('time consumption:', time.time() - t_s)
new_image = np.array(new_image) * 1.0 / 255.
img = new_image
return new_image
def refine_image_1024(prompt):
print('Refine with SDXL-Refiner (1024)')
global img
t_s = time.time()
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear')
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
new_image = pipe(prompt, image=img).images[0]
print('time consumption:', time.time() - t_s)
new_image = np.array(new_image) * 1.0 / 255.
img = new_image
return new_image
set_model('InstaFlow-0.9B')
set_base_model("runwayml/stable-diffusion-v1-5")
with gr.Blocks() as gradio_gui:
gr.Markdown("Set Input Seed and Text Prompts Here")
with gr.Row():
with gr.Column(scale=0.4):
seed_input = gr.Textbox(value='101098274', label="Random Seed")
with gr.Column(scale=0.4):
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
with gr.Row():
with gr.Column(scale=0.4):
with gr.Group():
gr.Markdown("Generation from InstaFlow-0.9B")
im = gr.Image()
gr.Markdown("Model ID: One-Step InstaFlow-0.9B")
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step Model (Second)')
new_image_button = gr.Button(value="One-Step Generation with the Input Seed")
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input], outputs=[im, inference_time_output])
next_image_button = gr.Button(value="One-Step Generation with a New Random Seed")
next_image_button.click(set_new_latent_and_generate_new_image_and_random_seed, inputs=[seed_input, prompt_input], outputs=[im, seed_input, inference_time_output])
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
refine_button_1024 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 1024)")
refine_button_1024.click(refine_image_1024, inputs=[prompt_input], outputs=[im])
with gr.Column(scale=0.4):
with gr.Group():
gr.Markdown("Generation from Stable Diffusion 1.5")
im_base = gr.Image()
gr.Markdown("Model ID: Multi-Step Stable Diffusion 1.5")
base_model_inference_time_output = gr.Textbox(value='0.0', label='Inference Time with Multi-Step Stable Diffusion (Second)')
num_inference_steps = gr.Textbox(value='25', label="Number of Inference Steps for Stable Diffusion")
guidance_scale = gr.Textbox(value='5.0', label="Guidance Scale for Stable Diffusion")
base_new_image_button = gr.Button(value="Multi-Step Generation with Stable Diffusion and the Input Seed")
base_new_image_button.click(set_new_latent_and_generate_new_image_with_base_model, inputs=[seed_input, prompt_input, num_inference_steps, guidance_scale], outputs=[im_base, base_model_inference_time_output])
gradio_gui.launch()
|