InstaFlow / app.py
XCLiu's picture
Update app.py
5ea557e
raw
history blame
4.85 kB
import gradio as gr
from pipeline_rf import RectifiedFlowPipeline
import torch
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
import torch.nn.functional as F
from diffusers import StableDiffusionXLImg2ImgPipeline
import time
import copy
import numpy as np
def merge_dW_to_unet(pipe, dW_dict, alpha=1.0):
_tmp_sd = pipe.unet.state_dict()
for key in dW_dict.keys():
_tmp_sd[key] += dW_dict[key] * alpha
pipe.unet.load_state_dict(_tmp_sd, strict=False)
return pipe
def get_dW_and_merge(pipe_rf, lora_path='Lykon/dreamshaper-7', save_dW = False, base_sd='runwayml/stable-diffusion-v1-5', alpha=1.0):
# get weights of base sd models
from diffusers import DiffusionPipeline
_pipe = DiffusionPipeline.from_pretrained(
base_sd,
torch_dtype=torch.float16,
safety_checker = None,
)
sd_state_dict = _pipe.unet.state_dict()
# get weights of the customized sd models, e.g., the aniverse downloaded from civitai.com
_pipe = DiffusionPipeline.from_pretrained(
lora_path,
torch_dtype=torch.float16,
safety_checker = None,
)
lora_unet_checkpoint = _pipe.unet.state_dict()
# get the dW
dW_dict = {}
for key in lora_unet_checkpoint.keys():
dW_dict[key] = lora_unet_checkpoint[key] - sd_state_dict[key]
# return and save dW dict
if save_dW:
save_name = lora_path.split('/')[-1] + '_dW.pt'
torch.save(dW_dict, save_name)
pipe_rf = merge_dW_to_unet(pipe_rf, dW_dict=dW_dict, alpha=alpha)
pipe_rf.vae = _pipe.vae
pipe_rf.text_encoder = _pipe.text_encoder
return dW_dict
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe = pipe.to("cuda")
insta_pipe = RectifiedFlowPipeline.from_pretrained("XCLiu/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16)
dW_dict = get_dW_and_merge(insta_pipe, lora_path="Lykon/dreamshaper-7", save_dW=False, alpha=1.0)
insta_pipe.to("cuda")
global img
@torch.no_grad()
def set_new_latent_and_generate_new_image(seed, prompt, randomize_seed, num_inference_steps=1, guidance_scale=0.0):
print('Generate with input seed')
global img
negative_prompt=""
if randomize_seed:
seed = np.random.randint(0, 2**32)
seed = int(seed)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
generator = torch.manual_seed(seed)
images = insta_pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0, generator=generator).images
inf_time = time.time() - t_s
img = copy.copy(np.array(images[0]))
return images[0], inf_time, seed
@torch.no_grad()
def refine_image_512(prompt):
print('Refine with SDXL-Refiner (512)')
global img
t_s = time.time()
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
new_image = pipe(prompt, image=img).images[0]
print('time consumption:', time.time() - t_s)
new_image = np.array(new_image) * 1.0 / 255.
img = copy.copy(new_image)
return new_image
with gr.Blocks() as gradio_gui:
gr.Markdown(
"""
# InstaFlow! One-Step Stable Diffusion with Rectified Flow [[paper]](https://arxiv.org/abs/2309.06380)
## This is a demo of one-step InstaFlow-0.9B with [dreamshaper-7](https://huggingface.co/Lykon/dreamshaper-7) (a LoRA that improves image quality) and measures the inference time.
""")
with gr.Row():
with gr.Column(scale=0.4):
with gr.Group():
gr.Markdown("Generation from InstaFlow-0.9B")
im = gr.Image()
with gr.Column(scale=0.4):
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step InstaFlow (Second)')
seed_input = gr.Textbox(value='101098274', label="Random Seed")
randomize_seed = gr.Checkbox(label="Randomly Sample a Random Seed", value=True)
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
new_image_button = gr.Button(value="One-Step Generation with InstaFlow and the Random Seed")
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input, randomize_seed], outputs=[im, inference_time_output, seed_input])
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
gradio_gui.launch()