Spaces:
Runtime error
Runtime error
import gradio as gr | |
from pipeline_rf import RectifiedFlowPipeline | |
import torch | |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize | |
import torch.nn.functional as F | |
from diffusers import StableDiffusionXLImg2ImgPipeline | |
import time | |
import copy | |
import numpy as np | |
def merge_dW_to_unet(pipe, dW_dict, alpha=1.0): | |
_tmp_sd = pipe.unet.state_dict() | |
for key in dW_dict.keys(): | |
_tmp_sd[key] += dW_dict[key] * alpha | |
pipe.unet.load_state_dict(_tmp_sd, strict=False) | |
return pipe | |
def get_dW_and_merge(pipe_rf, lora_path='Lykon/dreamshaper-7', save_dW = False, base_sd='runwayml/stable-diffusion-v1-5', alpha=1.0): | |
# get weights of base sd models | |
from diffusers import DiffusionPipeline | |
_pipe = DiffusionPipeline.from_pretrained( | |
base_sd, | |
torch_dtype=torch.float16, | |
safety_checker = None, | |
) | |
sd_state_dict = _pipe.unet.state_dict() | |
# get weights of the customized sd models, e.g., the aniverse downloaded from civitai.com | |
_pipe = DiffusionPipeline.from_pretrained( | |
lora_path, | |
torch_dtype=torch.float16, | |
safety_checker = None, | |
) | |
lora_unet_checkpoint = _pipe.unet.state_dict() | |
# get the dW | |
dW_dict = {} | |
for key in lora_unet_checkpoint.keys(): | |
dW_dict[key] = lora_unet_checkpoint[key] - sd_state_dict[key] | |
# return and save dW dict | |
if save_dW: | |
save_name = lora_path.split('/')[-1] + '_dW.pt' | |
torch.save(dW_dict, save_name) | |
pipe_rf = merge_dW_to_unet(pipe_rf, dW_dict=dW_dict, alpha=alpha) | |
pipe_rf.vae = _pipe.vae | |
pipe_rf.text_encoder = _pipe.text_encoder | |
return dW_dict | |
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True | |
) | |
pipe = pipe.to("cuda") | |
insta_pipe = RectifiedFlowPipeline.from_pretrained("XCLiu/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16) | |
dW_dict = get_dW_and_merge(insta_pipe, lora_path="Lykon/dreamshaper-7", save_dW=False, alpha=1.0) | |
insta_pipe.to("cuda") | |
global img | |
def set_new_latent_and_generate_new_image(seed, prompt, randomize_seed, num_inference_steps=1, guidance_scale=0.0): | |
print('Generate with input seed') | |
global img | |
negative_prompt="" | |
if randomize_seed: | |
seed = np.random.randint(0, 2**32) | |
seed = int(seed) | |
num_inference_steps = int(num_inference_steps) | |
guidance_scale = float(guidance_scale) | |
print(seed, num_inference_steps, guidance_scale) | |
t_s = time.time() | |
generator = torch.manual_seed(seed) | |
images = insta_pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0, generator=generator).images | |
inf_time = time.time() - t_s | |
img = copy.copy(np.array(images[0])) | |
return images[0], inf_time, seed | |
def refine_image_512(prompt): | |
print('Refine with SDXL-Refiner (512)') | |
global img | |
t_s = time.time() | |
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) / 255.0 | |
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy() | |
new_image = pipe(prompt, image=img).images[0] | |
print('time consumption:', time.time() - t_s) | |
new_image = np.array(new_image) * 1.0 / 255. | |
img = copy.copy(new_image) | |
return new_image | |
with gr.Blocks() as gradio_gui: | |
gr.Markdown( | |
""" | |
# InstaFlow! One-Step Stable Diffusion with Rectified Flow [[paper]](https://arxiv.org/abs/2309.06380) | |
## This is a demo of one-step InstaFlow-0.9B with [dreamshaper-7](https://huggingface.co/Lykon/dreamshaper-7) (a LoRA that improves image quality) and measures the inference time. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=0.4): | |
with gr.Group(): | |
gr.Markdown("Generation from InstaFlow-0.9B") | |
im = gr.Image() | |
with gr.Column(scale=0.4): | |
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step InstaFlow (Second)') | |
seed_input = gr.Textbox(value='101098274', label="Random Seed") | |
randomize_seed = gr.Checkbox(label="Randomly Sample a Random Seed", value=True) | |
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt") | |
new_image_button = gr.Button(value="One-Step Generation with InstaFlow and the Random Seed") | |
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input, randomize_seed], outputs=[im, inference_time_output, seed_input]) | |
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)") | |
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im]) | |
gradio_gui.launch() | |