InstaFlow / app.py
XCLiu's picture
Upload app.py
8af8710
raw
history blame
6.74 kB
import gradio as gr
from rf_models import RF_model
from sd_models import SD_model
import torch
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
import torch.nn.functional as F
from diffusers import StableDiffusionXLImg2ImgPipeline
import time
import copy
import numpy as np
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe = pipe.to("cuda")
global model
global base_model
global img
def set_model(model_id):
global model
if model_id == "InstaFlow-0.9B":
model = RF_model("./instaflow_09b.pt")
elif model_id == "InstaFlow-1.7B":
model = RF_model("./instaflow_17b.pt")
else:
raise NotImplementedError
print('Finished Loading Model!')
def set_base_model(model_id):
global base_model
if model_id == "runwayml/stable-diffusion-v1-5":
base_model = SD_model("runwayml/stable-diffusion-v1-5")
else:
raise NotImplementedError
print('Finished Loading Base Model!')
def set_new_latent_and_generate_new_image(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
print('Generate with input seed')
global model
global img
negative_prompt=""
seed = int(seed)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
inf_time = time.time() - t_s
img = copy.copy(new_image[0])
return new_image[0], inf_time
def set_new_latent_and_generate_new_image_with_base_model(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
print('Generate with input seed')
global base_model
negative_prompt=""
seed = int(seed)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
new_image = base_model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
inf_time = time.time() - t_s
return new_image[0], inf_time
def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
print('Generate with a random seed')
global model
global img
seed = np.random.randint(0, 2**32)
num_inference_steps = int(num_inference_steps)
guidance_scale = float(guidance_scale)
print(seed, num_inference_steps, guidance_scale)
t_s = time.time()
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
inf_time = time.time() - t_s
img = copy.copy(new_image[0])
return new_image[0], seed, inf_time
def refine_image_512(prompt):
print('Refine with SDXL-Refiner (512)')
global img
t_s = time.time()
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
new_image = pipe(prompt, image=img).images[0]
print('time consumption:', time.time() - t_s)
new_image = np.array(new_image) * 1.0 / 255.
img = new_image
return new_image
def refine_image_1024(prompt):
print('Refine with SDXL-Refiner (1024)')
global img
t_s = time.time()
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear')
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
new_image = pipe(prompt, image=img).images[0]
print('time consumption:', time.time() - t_s)
new_image = np.array(new_image) * 1.0 / 255.
img = new_image
return new_image
set_model('InstaFlow-0.9B')
set_base_model("runwayml/stable-diffusion-v1-5")
with gr.Blocks() as gradio_gui:
gr.Markdown(
"""
# InstaFlow! One-Step Stable Diffusion with Rectified Flow
## This Huggingface Space provides a demo of one-step InstaFlow-0.9B and measures the inference time.
## For fair comparison, Stable Difusion 1.5 is shown in parallel.
##
""")
gr.Markdown("Set Input Seed and Text Prompts Here")
with gr.Row():
with gr.Column(scale=0.4):
seed_input = gr.Textbox(value='101098274', label="Random Seed")
with gr.Column(scale=0.4):
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
with gr.Row():
with gr.Column(scale=0.4):
with gr.Group():
gr.Markdown("Generation from InstaFlow-0.9B")
im = gr.Image()
gr.Markdown("Model ID: One-Step InstaFlow-0.9B")
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step Model (Second)')
num_inference_steps = gr.Textbox(value='1', label="Number of Inference Steps (can only be 1)")
guidance_scale = gr.Textbox(value='0.0', label="Guidance Scale for InstaFlow (can only be 0.0)")
new_image_button = gr.Button(value="One-Step Generation with InstaFlow and the Input Seed")
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input, num_inference_steps, guidance_scale], outputs=[im, inference_time_output])
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
with gr.Column(scale=0.4):
with gr.Group():
gr.Markdown("Generation from Stable Diffusion 1.5")
im_base = gr.Image()
gr.Markdown("Model ID: Multi-Step Stable Diffusion 1.5")
base_model_inference_time_output = gr.Textbox(value='0.0', label='Inference Time with Multi-Step Stable Diffusion (Second)')
base_num_inference_steps = gr.Textbox(value='25', label="Number of Inference Steps for Stable Diffusion")
base_guidance_scale = gr.Textbox(value='5.0', label="Guidance Scale for Stable Diffusion")
base_new_image_button = gr.Button(value="Multi-Step Generation with Stable Diffusion and the Input Seed")
base_new_image_button.click(set_new_latent_and_generate_new_image_with_base_model, inputs=[seed_input, prompt_input, base_num_inference_steps, base_guidance_scale], outputs=[im_base, base_model_inference_time_output])
gradio_gui.launch()