Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
from rf_models import RF_model
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
7 |
-
import torch.nn.functional as F
|
8 |
-
|
9 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline
|
10 |
-
import time
|
11 |
-
import copy
|
12 |
-
import numpy as np
|
13 |
-
|
14 |
-
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
15 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
16 |
-
)
|
17 |
-
pipe = pipe.to("cuda")
|
18 |
-
|
19 |
-
global model
|
20 |
-
global img
|
21 |
-
|
22 |
-
def set_model(model_id):
|
23 |
-
global model
|
24 |
-
if model_id == "InstaFlow-0.9B":
|
25 |
-
model = RF_model("./instaflow_09b.pt")
|
26 |
-
elif model_id == "InstaFlow-1.7B":
|
27 |
-
model = RF_model("./instaflow_17b.pt")
|
28 |
-
else:
|
29 |
-
raise NotImplementedError
|
30 |
-
print('Finished Loading Model!')
|
31 |
-
|
32 |
-
|
33 |
-
def set_new_latent_and_generate_new_image(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
|
34 |
-
print('Generate with input seed')
|
35 |
-
global model
|
36 |
-
global img
|
37 |
-
seed = int(seed)
|
38 |
-
num_inference_steps = int(num_inference_steps)
|
39 |
-
guidance_scale = float(guidance_scale)
|
40 |
-
print(seed, num_inference_steps, guidance_scale)
|
41 |
-
|
42 |
-
t_s = time.time()
|
43 |
-
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
44 |
-
print('time consumption:', time.time() - t_s)
|
45 |
-
|
46 |
-
img = copy.copy(new_image[0])
|
47 |
-
|
48 |
-
return new_image[0]
|
49 |
-
|
50 |
-
def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
|
51 |
-
print('Generate with a random seed')
|
52 |
-
global model
|
53 |
-
global img
|
54 |
-
seed = np.random.randint(0, 2**32)
|
55 |
-
num_inference_steps = int(num_inference_steps)
|
56 |
-
guidance_scale = float(guidance_scale)
|
57 |
-
print(seed, num_inference_steps, guidance_scale)
|
58 |
-
|
59 |
-
t_s = time.time()
|
60 |
-
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
61 |
-
print('time consumption:', time.time() - t_s)
|
62 |
-
|
63 |
-
img = copy.copy(new_image[0])
|
64 |
-
|
65 |
-
return new_image[0], seed
|
66 |
-
|
67 |
-
|
68 |
-
def refine_image_512(prompt):
|
69 |
-
print('Refine with SDXL-Refiner (512)')
|
70 |
-
global img
|
71 |
-
|
72 |
-
t_s = time.time()
|
73 |
-
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
74 |
-
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
75 |
-
new_image = pipe(prompt, image=img).images[0]
|
76 |
-
print('time consumption:', time.time() - t_s)
|
77 |
-
new_image = np.array(new_image) * 1.0 / 255.
|
78 |
-
|
79 |
-
img = new_image
|
80 |
-
|
81 |
-
return new_image
|
82 |
-
|
83 |
-
def refine_image_1024(prompt):
|
84 |
-
print('Refine with SDXL-Refiner (1024)')
|
85 |
-
global img
|
86 |
-
|
87 |
-
t_s = time.time()
|
88 |
-
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
89 |
-
img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear')
|
90 |
-
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
91 |
-
new_image = pipe(prompt, image=img).images[0]
|
92 |
-
print('time consumption:', time.time() - t_s)
|
93 |
-
new_image = np.array(new_image) * 1.0 / 255.
|
94 |
-
|
95 |
-
img = new_image
|
96 |
-
|
97 |
-
return new_image
|
98 |
-
|
99 |
-
set_model('InstaFlow-0.9B')
|
100 |
-
|
101 |
-
with gr.Blocks() as gradio_gui:
|
102 |
-
|
103 |
-
with gr.Row():
|
104 |
-
with gr.Column(scale=0.5):
|
105 |
-
im = gr.Image()
|
106 |
-
|
107 |
-
with gr.Column():
|
108 |
-
#model_id = gr.Dropdown(["InstaFlow-0.9B", "InstaFlow-1.7B"], label="Model ID", info="Choose Your Model")
|
109 |
-
|
110 |
-
#set_model_button = gr.Button(value="Set New Model")
|
111 |
-
#set_model_button.click(set_model, inputs=[model_id])
|
112 |
-
|
113 |
-
model_id = gr.Textbox(value='InstaFlow-0.9B', label="Model ID")
|
114 |
-
|
115 |
-
seed_input = gr.Textbox(value='101098274', label="Random Seed")
|
116 |
-
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
|
117 |
-
|
118 |
-
new_image_button = gr.Button(value="Generate Image with the Input Seed")
|
119 |
-
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input], outputs=[im])
|
120 |
-
|
121 |
-
next_image_button = gr.Button(value="Generate Image with a Random Seed")
|
122 |
-
next_image_button.click(set_new_latent_and_generate_new_image_and_random_seed, inputs=[seed_input, prompt_input], outputs=[im, seed_input])
|
123 |
-
|
124 |
-
|
125 |
-
refine_button_512 = gr.Button(value="Refine with Refiner (Resolution: 512)")
|
126 |
-
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
|
127 |
-
|
128 |
-
refine_button_1024 = gr.Button(value="Refine with Refiner (Resolution: 1024)")
|
129 |
-
refine_button_1024.click(refine_image_1024, inputs=[prompt_input], outputs=[im])
|
130 |
-
|
131 |
-
|
132 |
-
gradio_gui.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|