XCLiu commited on
Commit
28e87bc
·
1 Parent(s): 3da403b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -132
app.py DELETED
@@ -1,132 +0,0 @@
1
- import gradio as gr
2
-
3
- from rf_models import RF_model
4
-
5
- import torch
6
- from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
7
- import torch.nn.functional as F
8
-
9
- from diffusers import StableDiffusionXLImg2ImgPipeline
10
- import time
11
- import copy
12
- import numpy as np
13
-
14
- pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
15
- "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
16
- )
17
- pipe = pipe.to("cuda")
18
-
19
- global model
20
- global img
21
-
22
- def set_model(model_id):
23
- global model
24
- if model_id == "InstaFlow-0.9B":
25
- model = RF_model("./instaflow_09b.pt")
26
- elif model_id == "InstaFlow-1.7B":
27
- model = RF_model("./instaflow_17b.pt")
28
- else:
29
- raise NotImplementedError
30
- print('Finished Loading Model!')
31
-
32
-
33
- def set_new_latent_and_generate_new_image(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
34
- print('Generate with input seed')
35
- global model
36
- global img
37
- seed = int(seed)
38
- num_inference_steps = int(num_inference_steps)
39
- guidance_scale = float(guidance_scale)
40
- print(seed, num_inference_steps, guidance_scale)
41
-
42
- t_s = time.time()
43
- new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
44
- print('time consumption:', time.time() - t_s)
45
-
46
- img = copy.copy(new_image[0])
47
-
48
- return new_image[0]
49
-
50
- def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
51
- print('Generate with a random seed')
52
- global model
53
- global img
54
- seed = np.random.randint(0, 2**32)
55
- num_inference_steps = int(num_inference_steps)
56
- guidance_scale = float(guidance_scale)
57
- print(seed, num_inference_steps, guidance_scale)
58
-
59
- t_s = time.time()
60
- new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
61
- print('time consumption:', time.time() - t_s)
62
-
63
- img = copy.copy(new_image[0])
64
-
65
- return new_image[0], seed
66
-
67
-
68
- def refine_image_512(prompt):
69
- print('Refine with SDXL-Refiner (512)')
70
- global img
71
-
72
- t_s = time.time()
73
- img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
74
- img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
75
- new_image = pipe(prompt, image=img).images[0]
76
- print('time consumption:', time.time() - t_s)
77
- new_image = np.array(new_image) * 1.0 / 255.
78
-
79
- img = new_image
80
-
81
- return new_image
82
-
83
- def refine_image_1024(prompt):
84
- print('Refine with SDXL-Refiner (1024)')
85
- global img
86
-
87
- t_s = time.time()
88
- img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
89
- img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear')
90
- img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
91
- new_image = pipe(prompt, image=img).images[0]
92
- print('time consumption:', time.time() - t_s)
93
- new_image = np.array(new_image) * 1.0 / 255.
94
-
95
- img = new_image
96
-
97
- return new_image
98
-
99
- set_model('InstaFlow-0.9B')
100
-
101
- with gr.Blocks() as gradio_gui:
102
-
103
- with gr.Row():
104
- with gr.Column(scale=0.5):
105
- im = gr.Image()
106
-
107
- with gr.Column():
108
- #model_id = gr.Dropdown(["InstaFlow-0.9B", "InstaFlow-1.7B"], label="Model ID", info="Choose Your Model")
109
-
110
- #set_model_button = gr.Button(value="Set New Model")
111
- #set_model_button.click(set_model, inputs=[model_id])
112
-
113
- model_id = gr.Textbox(value='InstaFlow-0.9B', label="Model ID")
114
-
115
- seed_input = gr.Textbox(value='101098274', label="Random Seed")
116
- prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
117
-
118
- new_image_button = gr.Button(value="Generate Image with the Input Seed")
119
- new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input], outputs=[im])
120
-
121
- next_image_button = gr.Button(value="Generate Image with a Random Seed")
122
- next_image_button.click(set_new_latent_and_generate_new_image_and_random_seed, inputs=[seed_input, prompt_input], outputs=[im, seed_input])
123
-
124
-
125
- refine_button_512 = gr.Button(value="Refine with Refiner (Resolution: 512)")
126
- refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
127
-
128
- refine_button_1024 = gr.Button(value="Refine with Refiner (Resolution: 1024)")
129
- refine_button_1024.click(refine_image_1024, inputs=[prompt_input], outputs=[im])
130
-
131
-
132
- gradio_gui.launch()