Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,180 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
from rf_models import RF_model
|
4 |
-
from sd_models import SD_model
|
5 |
-
|
6 |
-
import torch
|
7 |
-
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline
|
11 |
-
import time
|
12 |
-
import copy
|
13 |
-
import numpy as np
|
14 |
-
|
15 |
-
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
16 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
17 |
-
)
|
18 |
-
pipe = pipe.to("cuda")
|
19 |
-
|
20 |
-
global model
|
21 |
-
global base_model
|
22 |
-
global img
|
23 |
-
|
24 |
-
def set_model(model_id):
|
25 |
-
global model
|
26 |
-
if model_id == "InstaFlow-0.9B":
|
27 |
-
model = RF_model("./instaflow_09b.pt")
|
28 |
-
elif model_id == "InstaFlow-1.7B":
|
29 |
-
model = RF_model("./instaflow_17b.pt")
|
30 |
-
else:
|
31 |
-
raise NotImplementedError
|
32 |
-
print('Finished Loading Model!')
|
33 |
-
|
34 |
-
def set_base_model(model_id):
|
35 |
-
global base_model
|
36 |
-
if model_id == "runwayml/stable-diffusion-v1-5":
|
37 |
-
base_model = SD_model("runwayml/stable-diffusion-v1-5")
|
38 |
-
else:
|
39 |
-
raise NotImplementedError
|
40 |
-
print('Finished Loading Base Model!')
|
41 |
-
|
42 |
-
def set_new_latent_and_generate_new_image(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
|
43 |
-
print('Generate with input seed')
|
44 |
-
global model
|
45 |
-
global img
|
46 |
-
seed = int(seed)
|
47 |
-
num_inference_steps = int(num_inference_steps)
|
48 |
-
guidance_scale = float(guidance_scale)
|
49 |
-
print(seed, num_inference_steps, guidance_scale)
|
50 |
-
|
51 |
-
t_s = time.time()
|
52 |
-
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
53 |
-
#print('time consumption:', time.time() - t_s)
|
54 |
-
inf_time = time.time() - t_s
|
55 |
-
|
56 |
-
img = copy.copy(new_image[0])
|
57 |
-
|
58 |
-
return new_image[0], inf_time
|
59 |
-
|
60 |
-
def set_new_latent_and_generate_new_image_with_base_model(seed, prompt, num_inference_steps=1, guidance_scale=0.0):
|
61 |
-
print('Generate with input seed')
|
62 |
-
global base_model
|
63 |
-
negative_prompt=""
|
64 |
-
seed = int(seed)
|
65 |
-
num_inference_steps = int(num_inference_steps)
|
66 |
-
guidance_scale = float(guidance_scale)
|
67 |
-
print(seed, num_inference_steps, guidance_scale)
|
68 |
-
|
69 |
-
t_s = time.time()
|
70 |
-
new_image = base_model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
71 |
-
#print('time consumption:', time.time() - t_s)
|
72 |
-
inf_time = time.time() - t_s
|
73 |
-
|
74 |
-
return new_image[0], inf_time
|
75 |
-
|
76 |
-
|
77 |
-
def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0):
|
78 |
-
print('Generate with a random seed')
|
79 |
-
global model
|
80 |
-
global img
|
81 |
-
seed = np.random.randint(0, 2**32)
|
82 |
-
num_inference_steps = int(num_inference_steps)
|
83 |
-
guidance_scale = float(guidance_scale)
|
84 |
-
print(seed, num_inference_steps, guidance_scale)
|
85 |
-
|
86 |
-
t_s = time.time()
|
87 |
-
new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale)
|
88 |
-
#print('time consumption:', time.time() - t_s)
|
89 |
-
inf_time = time.time() - t_s
|
90 |
-
|
91 |
-
img = copy.copy(new_image[0])
|
92 |
-
|
93 |
-
return new_image[0], seed, inf_time
|
94 |
-
|
95 |
-
|
96 |
-
def refine_image_512(prompt):
|
97 |
-
print('Refine with SDXL-Refiner (512)')
|
98 |
-
global img
|
99 |
-
|
100 |
-
t_s = time.time()
|
101 |
-
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
102 |
-
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
103 |
-
new_image = pipe(prompt, image=img).images[0]
|
104 |
-
print('time consumption:', time.time() - t_s)
|
105 |
-
new_image = np.array(new_image) * 1.0 / 255.
|
106 |
-
|
107 |
-
img = new_image
|
108 |
-
|
109 |
-
return new_image
|
110 |
-
|
111 |
-
def refine_image_1024(prompt):
|
112 |
-
print('Refine with SDXL-Refiner (1024)')
|
113 |
-
global img
|
114 |
-
|
115 |
-
t_s = time.time()
|
116 |
-
img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2)
|
117 |
-
img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear')
|
118 |
-
img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy()
|
119 |
-
new_image = pipe(prompt, image=img).images[0]
|
120 |
-
print('time consumption:', time.time() - t_s)
|
121 |
-
new_image = np.array(new_image) * 1.0 / 255.
|
122 |
-
|
123 |
-
img = new_image
|
124 |
-
|
125 |
-
return new_image
|
126 |
-
|
127 |
-
set_model('InstaFlow-0.9B')
|
128 |
-
set_base_model("runwayml/stable-diffusion-v1-5")
|
129 |
-
|
130 |
-
with gr.Blocks() as gradio_gui:
|
131 |
-
gr.Markdown(
|
132 |
-
"""
|
133 |
-
# InstaFlow! One-Step Stable Diffusion with Rectified Flow
|
134 |
-
## This Huggingface Space provides a demo of one-step InstaFlow-0.9B and measures the inference time.
|
135 |
-
## For fair comparison, Stable Difusion 1.5 is shown in parallel.
|
136 |
-
##
|
137 |
-
##
|
138 |
-
""")
|
139 |
-
gr.Markdown("Set Input Seed and Text Prompts Here")
|
140 |
-
with gr.Row():
|
141 |
-
with gr.Column(scale=0.4):
|
142 |
-
seed_input = gr.Textbox(value='101098274', label="Random Seed")
|
143 |
-
with gr.Column(scale=0.4):
|
144 |
-
prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt")
|
145 |
-
|
146 |
-
with gr.Row():
|
147 |
-
with gr.Column(scale=0.4):
|
148 |
-
with gr.Group():
|
149 |
-
gr.Markdown("Generation from InstaFlow-0.9B")
|
150 |
-
im = gr.Image()
|
151 |
-
|
152 |
-
gr.Markdown("Model ID: One-Step InstaFlow-0.9B")
|
153 |
-
inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step Model (Second)')
|
154 |
-
new_image_button = gr.Button(value="One-Step Generation with the Input Seed")
|
155 |
-
new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input], outputs=[im, inference_time_output])
|
156 |
-
|
157 |
-
next_image_button = gr.Button(value="One-Step Generation with a New Random Seed")
|
158 |
-
next_image_button.click(set_new_latent_and_generate_new_image_and_random_seed, inputs=[seed_input, prompt_input], outputs=[im, seed_input, inference_time_output])
|
159 |
-
|
160 |
-
refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)")
|
161 |
-
refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im])
|
162 |
-
|
163 |
-
refine_button_1024 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 1024)")
|
164 |
-
refine_button_1024.click(refine_image_1024, inputs=[prompt_input], outputs=[im])
|
165 |
-
|
166 |
-
with gr.Column(scale=0.4):
|
167 |
-
with gr.Group():
|
168 |
-
gr.Markdown("Generation from Stable Diffusion 1.5")
|
169 |
-
im_base = gr.Image()
|
170 |
-
|
171 |
-
gr.Markdown("Model ID: Multi-Step Stable Diffusion 1.5")
|
172 |
-
base_model_inference_time_output = gr.Textbox(value='0.0', label='Inference Time with Multi-Step Stable Diffusion (Second)')
|
173 |
-
|
174 |
-
num_inference_steps = gr.Textbox(value='25', label="Number of Inference Steps for Stable Diffusion")
|
175 |
-
guidance_scale = gr.Textbox(value='5.0', label="Guidance Scale for Stable Diffusion")
|
176 |
-
|
177 |
-
base_new_image_button = gr.Button(value="Multi-Step Generation with Stable Diffusion and the Input Seed")
|
178 |
-
base_new_image_button.click(set_new_latent_and_generate_new_image_with_base_model, inputs=[seed_input, prompt_input, num_inference_steps, guidance_scale], outputs=[im_base, base_model_inference_time_output])
|
179 |
-
|
180 |
-
gradio_gui.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|