import gradio as gr from rf_models import RF_model import torch from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize import torch.nn.functional as F from diffusers import StableDiffusionXLImg2ImgPipeline import time import copy import numpy as np pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe = pipe.to("cuda") global model global img def set_model(model_id): global model if model_id == "InstaFlow-0.9B": model = RF_model("./instaflow_09b.pt") elif model_id == "InstaFlow-1.7B": model = RF_model("./instaflow_17b.pt") else: raise NotImplementedError print('Finished Loading Model!') def set_new_latent_and_generate_new_image(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0): print('Generate with input seed') global model global img seed = int(seed) num_inference_steps = int(num_inference_steps) guidance_scale = float(guidance_scale) print(seed, num_inference_steps, guidance_scale) t_s = time.time() new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale) print('time consumption:', time.time() - t_s) img = copy.copy(new_image[0]) return new_image[0] def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0): print('Generate with a random seed') global model global img seed = np.random.randint(0, 2**32) num_inference_steps = int(num_inference_steps) guidance_scale = float(guidance_scale) print(seed, num_inference_steps, guidance_scale) t_s = time.time() new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale) print('time consumption:', time.time() - t_s) img = copy.copy(new_image[0]) return new_image[0], seed def refine_image_512(prompt): print('Refine with SDXL-Refiner (512)') global img t_s = time.time() img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy() new_image = pipe(prompt, image=img).images[0] print('time consumption:', time.time() - t_s) new_image = np.array(new_image) * 1.0 / 255. img = new_image return new_image def refine_image_1024(prompt): print('Refine with SDXL-Refiner (1024)') global img t_s = time.time() img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear') img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy() new_image = pipe(prompt, image=img).images[0] print('time consumption:', time.time() - t_s) new_image = np.array(new_image) * 1.0 / 255. img = new_image return new_image set_model('InstaFlow-0.9B') with gr.Blocks() as gradio_gui: with gr.Row(): with gr.Column(scale=0.5): im = gr.Image() with gr.Column(): #model_id = gr.Dropdown(["InstaFlow-0.9B", "InstaFlow-1.7B"], label="Model ID", info="Choose Your Model") #set_model_button = gr.Button(value="Set New Model") #set_model_button.click(set_model, inputs=[model_id]) model_id = gr.Textbox(value='InstaFlow-0.9B', label="Model ID") seed_input = gr.Textbox(value='101098274', label="Random Seed") prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt") new_image_button = gr.Button(value="Generate Image with the Input Seed") new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input], outputs=[im]) next_image_button = gr.Button(value="Generate Image with a Random Seed") next_image_button.click(set_new_latent_and_generate_new_image_and_random_seed, inputs=[seed_input, prompt_input], outputs=[im, seed_input]) refine_button_512 = gr.Button(value="Refine with Refiner (Resolution: 512)") refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im]) refine_button_1024 = gr.Button(value="Refine with Refiner (Resolution: 1024)") refine_button_1024.click(refine_image_1024, inputs=[prompt_input], outputs=[im]) gradio_gui.launch()