import gradio as gr from rf_models import RF_model from sd_models import SD_model import torch from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize import torch.nn.functional as F from diffusers import StableDiffusionXLImg2ImgPipeline import time import copy import numpy as np pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe = pipe.to("cuda") global model global base_model global img def set_model(model_id): global model if model_id == "InstaFlow-0.9B": model = RF_model("./instaflow_09b.pt") elif model_id == "InstaFlow-1.7B": model = RF_model("./instaflow_17b.pt") else: raise NotImplementedError print('Finished Loading Model!') def set_base_model(model_id): global base_model if model_id == "runwayml/stable-diffusion-v1-5": base_model = SD_model("runwayml/stable-diffusion-v1-5") else: raise NotImplementedError print('Finished Loading Base Model!') def set_new_latent_and_generate_new_image(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0): print('Generate with input seed') global model global img seed = int(seed) num_inference_steps = int(num_inference_steps) guidance_scale = float(guidance_scale) print(seed, num_inference_steps, guidance_scale) t_s = time.time() new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale) #print('time consumption:', time.time() - t_s) inf_time = time.time() - t_s img = copy.copy(new_image[0]) return new_image[0], inf_time def set_new_latent_and_generate_new_image_with_base_model(seed, prompt, num_inference_steps=1, guidance_scale=0.0): print('Generate with input seed') global base_model negative_prompt="" seed = int(seed) num_inference_steps = int(num_inference_steps) guidance_scale = float(guidance_scale) print(seed, num_inference_steps, guidance_scale) t_s = time.time() new_image = base_model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale) #print('time consumption:', time.time() - t_s) inf_time = time.time() - t_s return new_image[0], inf_time def set_new_latent_and_generate_new_image_and_random_seed(seed, prompt, negative_prompt="", num_inference_steps=1, guidance_scale=0.0): print('Generate with a random seed') global model global img seed = np.random.randint(0, 2**32) num_inference_steps = int(num_inference_steps) guidance_scale = float(guidance_scale) print(seed, num_inference_steps, guidance_scale) t_s = time.time() new_image = model.set_new_latent_and_generate_new_image(int(seed), prompt, negative_prompt, int(num_inference_steps), guidance_scale) #print('time consumption:', time.time() - t_s) inf_time = time.time() - t_s img = copy.copy(new_image[0]) return new_image[0], seed, inf_time def refine_image_512(prompt): print('Refine with SDXL-Refiner (512)') global img t_s = time.time() img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy() new_image = pipe(prompt, image=img).images[0] print('time consumption:', time.time() - t_s) new_image = np.array(new_image) * 1.0 / 255. img = new_image return new_image def refine_image_1024(prompt): print('Refine with SDXL-Refiner (1024)') global img t_s = time.time() img = torch.tensor(img).unsqueeze(0).permute(0, 3, 1, 2) img = torch.nn.functional.interpolate(img, size=1024, mode='bilinear') img = img.permute(0, 2, 3, 1).squeeze(0).cpu().numpy() new_image = pipe(prompt, image=img).images[0] print('time consumption:', time.time() - t_s) new_image = np.array(new_image) * 1.0 / 255. img = new_image return new_image set_model('InstaFlow-0.9B') set_base_model("runwayml/stable-diffusion-v1-5") with gr.Blocks() as gradio_gui: gr.Markdown( """ # InstaFlow! One-Step Stable Diffusion with Rectified Flow ## This Huggingface Space provides a demo of one-step InstaFlow-0.9B and measures the inference time. ## For fair comparison, Stable Difusion 1.5 is shown in parallel. ## ## """) gr.Markdown("Set Input Seed and Text Prompts Here") with gr.Row(): with gr.Column(scale=0.4): seed_input = gr.Textbox(value='101098274', label="Random Seed") with gr.Column(scale=0.4): prompt_input = gr.Textbox(value='A high-resolution photograph of a waterfall in autumn; muted tone', label="Prompt") with gr.Row(): with gr.Column(scale=0.4): with gr.Group(): gr.Markdown("Generation from InstaFlow-0.9B") im = gr.Image() gr.Markdown("Model ID: One-Step InstaFlow-0.9B") inference_time_output = gr.Textbox(value='0.0', label='Inference Time with One-Step Model (Second)') new_image_button = gr.Button(value="One-Step Generation with the Input Seed") new_image_button.click(set_new_latent_and_generate_new_image, inputs=[seed_input, prompt_input], outputs=[im, inference_time_output]) next_image_button = gr.Button(value="One-Step Generation with a New Random Seed") next_image_button.click(set_new_latent_and_generate_new_image_and_random_seed, inputs=[seed_input, prompt_input], outputs=[im, seed_input, inference_time_output]) refine_button_512 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 512)") refine_button_512.click(refine_image_512, inputs=[prompt_input], outputs=[im]) refine_button_1024 = gr.Button(value="Refine One-Step Generation with SDXL Refiner (Resolution: 1024)") refine_button_1024.click(refine_image_1024, inputs=[prompt_input], outputs=[im]) with gr.Column(scale=0.4): with gr.Group(): gr.Markdown("Generation from Stable Diffusion 1.5") im_base = gr.Image() gr.Markdown("Model ID: Multi-Step Stable Diffusion 1.5") base_model_inference_time_output = gr.Textbox(value='0.0', label='Inference Time with Multi-Step Stable Diffusion (Second)') num_inference_steps = gr.Textbox(value='25', label="Number of Inference Steps for Stable Diffusion") guidance_scale = gr.Textbox(value='5.0', label="Guidance Scale for Stable Diffusion") base_new_image_button = gr.Button(value="Multi-Step Generation with Stable Diffusion and the Input Seed") base_new_image_button.click(set_new_latent_and_generate_new_image_with_base_model, inputs=[seed_input, prompt_input, num_inference_steps, guidance_scale], outputs=[im_base, base_model_inference_time_output]) gradio_gui.launch()