File size: 6,800 Bytes
a52690c
687e655
 
 
 
a52690c
43eb2bd
a52690c
6014825
87a5cc7
a52690c
 
687e655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
title: FRN
emoji: 📉
colorFrom: gray
colorTo: red
sdk: streamlit
pinned: true
app_file: app.py
sdk_version: 1.11.0
python_version: 3.9.1
---

# FRN - Full-band Recurrent Network Official Implementation

**Improving performance of real-time full-band blind packet-loss concealment with predictive network - ICASSP 2023**

[![Generic badge](https://img.shields.io/badge/arXiv-2211.04071-brightgreen.svg?style=flat-square)](https://arxiv.org/abs/2211.04071)
[![Generic badge](https://img.shields.io/github/stars/Crystalsound/FRN?color=yellow&label=FRN&logo=github&style=flat-square)](https://github.com/Crystalsound/FRN/)
[![Generic badge](https://img.shields.io/github/last-commit/Crystalsound/FRN?color=blue&label=last%20commit&style=flat-square)](https://github.com/Crystalsound/FRN/commits)

## License and citation

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file.

If you use our software, please cite as below.
For future queries, please contact [anh.nguyen@namitech.io](mailto:anh.nguyen@namitech.io).

Copyright © 2022 NAMI TECHNOLOGY JSC, Inc. All rights reserved.

```
@misc{Nguyen2022ImprovingPO,
  title={Improving performance of real-time full-band blind packet-loss concealment with predictive network},
  author={Viet-Anh Nguyen and Anh H. T. Nguyen and Andy W. H. Khong},
  year={2022},
  eprint={2211.04071},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
}
```

# 1. Results

Our model achieved a significant gain over baselines. Here, we include the predicted packet loss concealment
mean-opinion-score (PLCMOS) using Microsoft's [PLCMOS](https://github.com/microsoft/PLC-Challenge/tree/main/PLCMOS)
service. Please refer to our paper for more benchmarks.

| Model   | PLCMOS    | 
|---------|-----------|
| Input   | 3.517     | 
| tPLC    | 3.463     | 
| TFGAN   | 3.645     | 
| **FRN** | **3.655** |

We also provide several audio samples in [https://crystalsound.github.io/FRN/](https://crystalsound.github.io/FRN/) for
comparison.

# 2. Installation

## Setup

### Clone the repo

```
$ git clone https://github.com/Crystalsound/FRN.git
$ cd FRN
```

### Install dependencies

* Our implementation requires the `libsndfile` libraries for the Python packages `soundfile`. On Ubuntu, they can be
  easily installed using `apt-get`:
    ```
    $ apt-get update && apt-get install libsndfile-dev
    ```
* Create a Python 3.8 environment. Conda is recommended:
   ```
   $ conda create -n frn python=3.8
   $ conda activate frn
   ```

* Install the requirements:
    ```
    $ pip install -r requirements.txt 
    ```

# 3. Data preparation

In our paper, we conduct experiments on the [VCTK](https://datashare.ed.ac.uk/handle/10283/3443) dataset.

* Download and extract the datasets:
    ```
    $ wget http://www.udialogue.org/download/VCTK-Corpus.tar.gz -O data/vctk/VCTK-Corpus.tar.gz
    $ tar -zxvf data/vctk/VCTK-Corpus.tar.gz -C data/vctk/ --strip-components=1
    ```

  After extracting the datasets, your `./data` directory should look like this:

    ```
    .
    |--data
        |--vctk
            |--wav48
                |--p225
                    |--p225_001.wav
                    ...
            |--train.txt   
            |--test.txt
    ```
* In order to load the datasets, text files that contain training and testing audio paths are required. We have
  prepared `train.txt` and `test.txt` files in `./data/vctk` directory.

# 4. Run the code

## Configuration

`config.py` is the most important file. Here, you can find all the configurations related to experiment setups,
datasets, models, training, testing, etc. Although the config file has been explained thoroughly, we recommend reading
our paper to fully understand each parameter.

## Training

* Adjust training hyperparameters in `config.py`. We provide the pretrained predictor in `lightning_logs/predictor` as stated in our paper. The FRN model can be trained entirely from scratch and will work as well. In this case, initiate `PLCModel(..., pred_ckpt_path=None)`.

* Run `main.py`:
    ```
    $ python main.py --mode train
    ```
* Each run will create a version in `./lightning_logs`, where the model checkpoint and hyperparameters are saved. In
  case you want to continue training from one of these versions, just set the argument `--version` of the above command
  to your desired version number. For example:
    ```
    # resume from version 0
    $ python main.py --mode train --version 0
    ```
* To monitor the training curves as well as inspect model output visualization, run the tensorboard:
    ```
    $ tensorboard --logdir=./lightning_logs --bind_all
    ```
  ![image.png](https://images.viblo.asia/eb2246f9-2747-43b9-8f78-d6c154144716.png)

## Evaluation

In our paper, we evaluated with 2 masking methods: simulation using Markov Chain and employing real traces in PLC
Challenge.

* Get the blind test set with loss traces:
    ```
    $ wget http://plcchallenge2022pub.blob.core.windows.net/plcchallengearchive/blind.tar.gz
    $ tar -xvf blind.tar.gz -C test_samples
    ```
* Modify `config.py` to change evaluation setup if necessary.
* Run `main.py` with a version number to be evaluated:
    ```
    $ python main.py --mode eval --version 0
    ```
  During the evaluation, several output samples are saved to `CONFIG.LOG.sample_path` for sanity testing.

## Configure a new dataset

Our implementation currently works with the VCTK dataset but can be easily extensible to a new one.

* Firstly, you need to prepare `train.txt` and `test.txt`. See `./data/vctk/train.txt` and `./data/vctk/test.txt` for
  example.
* Secondly, add a new dictionary to `CONFIG.DATA.data_dir`:
    ```
    {
    'root': 'path/to/data/directory',
    'train': 'path/to/train.txt',
    'test': 'path/to/test.txt'
    }
    ```
  **Important:** Make sure each line in `train.txt` and `test.txt` joining with `'root'` is a valid path to its
  corresponding audio file.

# 5. Audio generation

* In order to generate output audios, you need to modify `CONFIG.TEST.in_dir` to your input directory.
* Run `main.py`:
    ```
    python main.py --mode test --version 0
    ```
  The generated audios are saved to `CONFIG.TEST.out_dir`.

  ## ONNX inferencing
  We provide ONNX inferencing scripts and the best ONNX model (converted from the best checkpoint)
  at `lightning_logs/best_model.onnx`.
    * Convert a checkpoint to an ONNX model:
        ```
        python main.py --mode onnx --version 0
        ```
      The converted ONNX model will be saved to `lightning_logs/version_0/checkpoints`.
    * Put test audios in `test_samples` and inference with the converted ONNX model (see `inference_onnx.py` for more
      details):
         ```
        python inference_onnx.py --onnx_path lightning_logs/version_0/frn.onnx
        ```