File size: 12,077 Bytes
47bb03b
63c4bae
687e655
 
 
 
 
 
 
 
 
 
c9e9d08
c276eea
59f04fa
e83ff6f
687e655
9de3656
035cc4c
 
 
 
bd7db8c
dbe7113
 
8093d20
ca05f83
4e71ba8
 
9de3656
687e655
 
 
 
 
 
 
 
 
 
 
 
 
47bb03b
 
687e655
 
 
 
 
 
 
 
 
 
 
 
47bb03b
687e655
 
 
215b1af
687e655
9fd29b1
 
687e655
47bb03b
687e655
 
47bb03b
687e655
 
47bb03b
687e655
 
47bb03b
687e655
428e1b4
69f6cc9
 
 
687e655
 
adb8651
 
 
006907c
 
 
 
 
 
 
687e655
 
 
 
 
 
69f6cc9
687e655
 
 
6fe43d7
1d1e6d2
687e655
 
 
 
 
41c7860
687e655
 
1d1e6d2
687e655
 
6fe43d7
1d1e6d2
687e655
 
 
 
 
 
 
 
 
f3ee147
687e655
 
1d1e6d2
69f6cc9
687e655
 
6fe43d7
9fd29b1
687e655
1d1e6d2
687e655
 
 
1d1e6d2
687e655
1d1e6d2
687e655
1d1e6d2
59f04fa
 
035cc4c
 
 
 
 
1d8e82e
 
 
035cc4c
1d8e82e
 
 
 
035cc4c
 
1d8e82e
035cc4c
1d8e82e
 
 
035cc4c
1d8e82e
035cc4c
 
1d8e82e
035cc4c
1d8e82e
 
 
035cc4c
1d8e82e
 
 
 
035cc4c
1d8e82e
 
 
035cc4c
1d8e82e
035cc4c
 
 
 
 
 
1d8e82e
 
 
 
 
 
 
 
 
 
 
 
c9e9d08
1d8e82e
59f04fa
 
00cabc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cefb462
d438606
 
 
 
c276eea
264274f
 
dbe7113
 
 
59f04fa
1d8e82e
59f04fa
cefb462
 
dbe7113
 
 
59f04fa
dbe7113
 
 
 
8093d20
 
 
 
 
 
dbe7113
8093d20
 
 
3acc282
59f04fa
3acc282
59f04fa
3acc282
59f04fa
3acc282
59f04fa
dbe7113
767163f
863266f
3acc282
 
863266f
8093d20
dbe7113
e3da060
dbe7113
4e71ba8
3acc282
863266f
4e71ba8
863266f
 
 
3acc282
863266f
dbe7113
863266f
dbe7113
863266f
3acc282
 
863266f
 
d438606
4e71ba8
ca05f83
4e71ba8
ca05f83
4e71ba8
 
 
 
 
ca05f83
4e71ba8
 
 
 
 
ca05f83
4e71ba8
 
 
 
 
 
45ac74a
995dcf4
4e71ba8
 
 
fc37635
59f04fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np

import streamlit as st
import librosa
import soundfile as sf
import librosa.display
from config import CONFIG
import torch
from dataset import MaskGenerator
import onnxruntime, onnx
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from pystoi import stoi
from pesq import pesq
import pandas as pd
import torchaudio


from torchmetrics.audio import ShortTimeObjectiveIntelligibility as STOI
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ


from PLCMOS.plc_mos import PLCMOSEstimator
from speechmos import dnsmos
from speechmos import plcmos

import speech_recognition as speech_r
from jiwer import wer


@st.cache
def load_model():
    path = 'lightning_logs/version_0/checkpoints/frn.onnx'
    onnx_model = onnx.load(path)
    options = onnxruntime.SessionOptions()
    options.intra_op_num_threads = 2
    options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
    session = onnxruntime.InferenceSession(path, options)
    input_names = [x.name for x in session.get_inputs()]
    output_names = [x.name for x in session.get_outputs()]
    return session, onnx_model, input_names, output_names

def inference(re_im, session, onnx_model, input_names, output_names):
    inputs = {input_names[i]: np.zeros([d.dim_value for d in _input.type.tensor_type.shape.dim],
                                       dtype=np.float32)
              for i, _input in enumerate(onnx_model.graph.input)
              }

    output_audio = []
    for t in range(re_im.shape[0]):
        inputs[input_names[0]] = re_im[t]
        out, prev_mag, predictor_state, mlp_state = session.run(output_names, inputs)
        inputs[input_names[1]] = prev_mag
        inputs[input_names[2]] = predictor_state
        inputs[input_names[3]] = mlp_state
        output_audio.append(out)

    output_audio = torch.tensor(np.concatenate(output_audio, 0))
    output_audio = output_audio.permute(1, 0, 2).contiguous()
    output_audio = torch.view_as_complex(output_audio)
    output_audio = torch.istft(output_audio, window, stride, window=hann)
    return output_audio.numpy()

def visualize(hr, lr, recon, sr):
    sr = sr
    window_size = 1024
    window = np.hanning(window_size)

    stft_hr = librosa.core.spectrum.stft(hr, n_fft=window_size, hop_length=512, window=window)
    stft_hr = 2 * np.abs(stft_hr) / np.sum(window)

    stft_lr = librosa.core.spectrum.stft(lr, n_fft=window_size, hop_length=512, window=window)
    stft_lr = 2 * np.abs(stft_lr) / np.sum(window)

    stft_recon = librosa.core.spectrum.stft(recon, n_fft=window_size, hop_length=512, window=window)
    stft_recon = 2 * np.abs(stft_recon) / np.sum(window)

    fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=True, sharex=True, figsize=(16, 12))
    ax1.title.set_text('Оригинальный сигнал')
    ax2.title.set_text('Сигнал с потерями')
    ax3.title.set_text('Улучшенный сигнал')

    canvas = FigureCanvas(fig)
    p = librosa.display.specshow(librosa.amplitude_to_db(stft_hr), ax=ax1, y_axis='log', x_axis='time', sr=sr)
    p = librosa.display.specshow(librosa.amplitude_to_db(stft_lr), ax=ax2, y_axis='log', x_axis='time', sr=sr)
    p = librosa.display.specshow(librosa.amplitude_to_db(stft_recon), ax=ax3, y_axis='log', x_axis='time', sr=sr)

    ax1.set_xlabel('Время, с')
    ax1.set_ylabel('Частота, Гц')
    ax2.set_xlabel('Время, с')
    ax2.set_ylabel('Частота, Гц')
    ax3.set_xlabel('Время, с')
    ax3.set_ylabel('Частота, Гц')
    return fig

packet_size = CONFIG.DATA.EVAL.packet_size
window = CONFIG.DATA.window_size
stride = CONFIG.DATA.stride

title = 'Сокрытие потерь пакетов'
st.set_page_config(page_title=title, page_icon=":sound:")
st.title(title)

st.subheader('1. Загрузка аудио')
uploaded_file = st.file_uploader("Загрузите аудио формата (.wav) 48 КГц")

is_file_uploaded = uploaded_file is not None
if not is_file_uploaded:
    uploaded_file = 'sample.wav'

target, sr = librosa.load(uploaded_file)
target = target[:packet_size * (len(target) // packet_size)]

st.text('Ваше аудио')
st.audio(uploaded_file)

st.subheader('2. Выберите желаемый процент потерь')
slider = [st.slider("Ожидаемый процент потерь для генератора потерь цепи Маркова", 0, 100, step=1)]
loss_percent = float(slider[0])/100
mask_gen = MaskGenerator(is_train=False, probs=[(1 - loss_percent, loss_percent)])
lossy_input = target.copy().reshape(-1, packet_size)
mask = mask_gen.gen_mask(len(lossy_input), seed=0)[:, np.newaxis]
lossy_input *= mask
lossy_input = lossy_input.reshape(-1)
hann = torch.sqrt(torch.hann_window(window))
lossy_input_tensor = torch.tensor(lossy_input)
re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(
    1).numpy().astype(np.float32)
session, onnx_model, input_names, output_names = load_model()

if st.button('Сгенерировать потери'):
    with st.spinner('Ожидайте...'):
        output = inference(re_im, session, onnx_model, input_names, output_names)

        st.subheader('3. Визуализация')
        fig = visualize(target, lossy_input, output, sr)
        st.pyplot(fig)
    st.success('Сделано!')
    sf.write('target.wav', target, sr)
    sf.write('lossy.wav', lossy_input, sr)
    sf.write('enhanced.wav', output, sr)
    st.text('Оригинальное аудио')
    st.audio('target.wav')
    st.text('Аудио с потерями')
    st.audio('lossy.wav')
    st.text('Улучшенное аудио')
    st.audio('enhanced.wav')






    #data_clean, samplerate = torchaudio.load('target.wav')
    #data_lossy, samplerate = torchaudio.load('lossy.wav')
    #data_enhanced, samplerate = torchaudio.load('enhanced.wav')

    #min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
    #data_clean = data_clean[:, :min_len]
    #data_lossy = data_lossy[:, :min_len]
    #data_enhanced = data_enhanced[:, :min_len]


    #stoi = STOI(samplerate)

    #stoi_orig = round(float(stoi(data_clean, data_clean)),3)
    #stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
    #stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)

    #stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]


    #pesq = PESQ(8000, 'nb')

    #data_clean = data_clean.cpu().numpy()
    #data_lossy = data_lossy.cpu().numpy()
    #data_enhanced = data_enhanced.cpu().numpy()

    #if samplerate != 8000:
        #data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
        #data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
        #data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)

    #pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
    #pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
    #pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))

    #psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]





    #_____________________________________________
    data_clean, samplerate = sf.read('target.wav')
    data_lossy, samplerate = sf.read('lossy.wav')
    data_enhanced, samplerate = sf.read('enhanced.wav')
    min_len = min(data_clean.shape[0], data_lossy.shape[0], data_enhanced.shape[0])
    data_clean = data_clean[:min_len]
    data_lossy = data_lossy[:min_len]
    data_enhanced = data_enhanced[:min_len]


    stoi_orig = round(stoi(data_clean, data_clean, samplerate, extended=False),5)
    stoi_lossy  = round(stoi(data_clean, data_lossy , samplerate, extended=False),5)
    stoi_enhanced = round(stoi(data_clean, data_enhanced, samplerate, extended=False),5)
    
    stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]


    #def get_power(x, nfft):
    #    S = librosa.stft(x, n_fft=nfft)
    #    S = np.log(np.abs(S) ** 2 + 1e-8)
    #    return S
    #def LSD(x_hr, x_pr):
    #    S1 = get_power(x_hr, nfft=2048)
    #    S2 = get_power(x_pr, nfft=2048)
    #    lsd = np.mean(np.sqrt(np.mean((S1 - S2) ** 2, axis=-1)), axis=0)
    #    return lsd

    #lsd_orig = LSD(data_clean,data_clean)
    #lsd_lossy = LSD(data_lossy,data_clean)
    #lsd_enhanced = LSD(data_enhanced,data_clean)

    #lsd_mass=[lsd_orig, lsd_lossy, lsd_enhanced]
        
    if samplerate != 8000:
        data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
        data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
        data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
    


    pesq_orig = pesq(fs = 8000, ref = data_clean, deg = data_clean, mode='nb')
    pesq_lossy = pesq(fs = 8000, ref = data_clean, deg = data_lossy, mode='nb')
    pesq_enhanced = pesq(fs = 8000, ref = data_clean, deg = data_enhanced, mode='nb')

    psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]

    

    data_clean, fs = sf.read('target.wav')
    data_lossy, fs = sf.read('lossy.wav')
    data_enhanced, fs = sf.read('enhanced.wav')

    if fs!= 16000:
        data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
        data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
        data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)

    PLC_example=PLCMOSEstimator()
    PLC_org = PLC_example.run(audio_degraded=data_clean, audio_clean=data_clean)[0]
    PLC_lossy = PLC_example.run(audio_degraded=data_lossy, audio_clean=data_clean)[0]
    PLC_enhanced = PLC_example.run(audio_degraded=data_enhanced, audio_clean=data_clean)[0]

    PLC_massv1 = [PLC_org, PLC_lossy, PLC_enhanced]


    
    df_1 = pd.DataFrame(columns=['Audio', 'PESQ', 'STOI', 'PLCMOSv1'])

    df_1['Audio'] = ['Clean', 'Lossy', 'Enhanced']

    df_1['PESQ'] = psq_mas

    df_1['STOI'] = stoi_mass

    #df['LSD'] = lsd_mass
    df_1['PLCMOSv1'] = PLC_massv1
    #new_columns = pd.MultiIndex.from_tuples([('', 'Audio'), ('Эталонные метрики', 'PESQ'), ('Эталонные метрики', 'STOI'), ('Эталонные метрики', 'PLCMOSv1')])
                          
    # Присваиваем новый мультииндекс столбцам
    #df_1.columns = new_columns


    PLC_massv2 = [plcmos.run("target.wav", sr=16000)['plcmos'], plcmos.run("lossy.wav", sr=16000)['plcmos'], plcmos.run("enhanced.wav", sr=16000)['plcmos']]

    #DNS = [dnsmos.run("target.wav", sr=16000)['ovrl_mos'], dnsmos.run("lossy.wav", sr=16000)['ovrl_mos'], dnsmos.run("enhanced.wav", sr=16000)['ovrl_mos']]

    df_1['PLCMOSv2'] = PLC_massv2
    #df_1['DNSMOS'] = DNS
    

    #df_2 = pd.DataFrame(columns=['DNSMOS', 'PLCMOSv2'])

    #df_2['DNSMOS'] = DNS

    #df_2['PLCMOSv2'] = PLC_massv2

    #new_columns = pd.MultiIndex.from_tuples([('Неэталонные метрики', 'DNSMOS'), ('Неэталонные метрики', 'PLCMOSv2')])
                          
    # Присваиваем новый мультииндекс столбцам
    #df_2.columns = new_columns
    #df_merged = df_1.merge(df_2, left_index=True, right_index=True)


    r = speech_r.Recognizer()

    harvard = speech_r.AudioFile('target.wav')
    with harvard as source:
        audio = r.record(source)

    orig = r.recognize_google(audio, language = "ru-RU")

    harvard = speech_r.AudioFile('lossy.wav')
    with harvard as source:
        audio = r.record(source)
    lossy = r.recognize_google(audio, language = "ru-RU")


    harvard = speech_r.AudioFile('enhanced.wav')
    with harvard as source:
        audio = r.record(source)
    enhanced = r.recognize_google(audio, language = "ru-RU")

    error1 = wer(orig, orig)
    error2 = wer(orig, lossy)
    error3 = wer(orig, enhanced)
    WER_mass=[error1*100, error2*100, error3*100]

    df_1['WER'] = WER_mass
    
    st.dataframe(df_1)