File size: 12,035 Bytes
47bb03b 63c4bae 687e655 c9e9d08 c276eea 59f04fa e83ff6f 687e655 9de3656 035cc4c bd7db8c dbe7113 8093d20 4e71ba8 9de3656 687e655 47bb03b 687e655 47bb03b 687e655 215b1af 687e655 9fd29b1 687e655 47bb03b 687e655 47bb03b 687e655 47bb03b 687e655 47bb03b 687e655 428e1b4 69f6cc9 687e655 adb8651 006907c 687e655 69f6cc9 687e655 6fe43d7 1d1e6d2 687e655 41c7860 687e655 1d1e6d2 687e655 6fe43d7 1d1e6d2 687e655 f3ee147 687e655 1d1e6d2 69f6cc9 687e655 6fe43d7 9fd29b1 687e655 1d1e6d2 687e655 1d1e6d2 687e655 1d1e6d2 687e655 1d1e6d2 59f04fa 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e 035cc4c 1d8e82e c9e9d08 1d8e82e 59f04fa 00cabc9 cefb462 d438606 c276eea 264274f dbe7113 59f04fa 1d8e82e 59f04fa cefb462 dbe7113 59f04fa dbe7113 8093d20 dbe7113 8093d20 3acc282 59f04fa 3acc282 59f04fa 3acc282 59f04fa 3acc282 59f04fa dbe7113 767163f 863266f 3acc282 863266f 8093d20 dbe7113 e3da060 dbe7113 4e71ba8 3acc282 863266f 4e71ba8 863266f 3acc282 863266f dbe7113 863266f dbe7113 863266f 3acc282 863266f d438606 4e71ba8 eaca05b 4e71ba8 fc37635 59f04fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import numpy as np
import streamlit as st
import librosa
import soundfile as sf
import librosa.display
from config import CONFIG
import torch
from dataset import MaskGenerator
import onnxruntime, onnx
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from pystoi import stoi
from pesq import pesq
import pandas as pd
import torchaudio
from torchmetrics.audio import ShortTimeObjectiveIntelligibility as STOI
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ
from PLCMOS.plc_mos import PLCMOSEstimator
from speechmos import dnsmos
from speechmos import plcmos
import speech_recognition as sr
from jiwer import wer
@st.cache
def load_model():
path = 'lightning_logs/version_0/checkpoints/frn.onnx'
onnx_model = onnx.load(path)
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 2
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
session = onnxruntime.InferenceSession(path, options)
input_names = [x.name for x in session.get_inputs()]
output_names = [x.name for x in session.get_outputs()]
return session, onnx_model, input_names, output_names
def inference(re_im, session, onnx_model, input_names, output_names):
inputs = {input_names[i]: np.zeros([d.dim_value for d in _input.type.tensor_type.shape.dim],
dtype=np.float32)
for i, _input in enumerate(onnx_model.graph.input)
}
output_audio = []
for t in range(re_im.shape[0]):
inputs[input_names[0]] = re_im[t]
out, prev_mag, predictor_state, mlp_state = session.run(output_names, inputs)
inputs[input_names[1]] = prev_mag
inputs[input_names[2]] = predictor_state
inputs[input_names[3]] = mlp_state
output_audio.append(out)
output_audio = torch.tensor(np.concatenate(output_audio, 0))
output_audio = output_audio.permute(1, 0, 2).contiguous()
output_audio = torch.view_as_complex(output_audio)
output_audio = torch.istft(output_audio, window, stride, window=hann)
return output_audio.numpy()
def visualize(hr, lr, recon, sr):
sr = sr
window_size = 1024
window = np.hanning(window_size)
stft_hr = librosa.core.spectrum.stft(hr, n_fft=window_size, hop_length=512, window=window)
stft_hr = 2 * np.abs(stft_hr) / np.sum(window)
stft_lr = librosa.core.spectrum.stft(lr, n_fft=window_size, hop_length=512, window=window)
stft_lr = 2 * np.abs(stft_lr) / np.sum(window)
stft_recon = librosa.core.spectrum.stft(recon, n_fft=window_size, hop_length=512, window=window)
stft_recon = 2 * np.abs(stft_recon) / np.sum(window)
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=True, sharex=True, figsize=(16, 12))
ax1.title.set_text('Оригинальный сигнал')
ax2.title.set_text('Сигнал с потерями')
ax3.title.set_text('Улучшенный сигнал')
canvas = FigureCanvas(fig)
p = librosa.display.specshow(librosa.amplitude_to_db(stft_hr), ax=ax1, y_axis='log', x_axis='time', sr=sr)
p = librosa.display.specshow(librosa.amplitude_to_db(stft_lr), ax=ax2, y_axis='log', x_axis='time', sr=sr)
p = librosa.display.specshow(librosa.amplitude_to_db(stft_recon), ax=ax3, y_axis='log', x_axis='time', sr=sr)
ax1.set_xlabel('Время, с')
ax1.set_ylabel('Частота, Гц')
ax2.set_xlabel('Время, с')
ax2.set_ylabel('Частота, Гц')
ax3.set_xlabel('Время, с')
ax3.set_ylabel('Частота, Гц')
return fig
packet_size = CONFIG.DATA.EVAL.packet_size
window = CONFIG.DATA.window_size
stride = CONFIG.DATA.stride
title = 'Сокрытие потерь пакетов'
st.set_page_config(page_title=title, page_icon=":sound:")
st.title(title)
st.subheader('1. Загрузка аудио')
uploaded_file = st.file_uploader("Загрузите аудио формата (.wav) 48 КГц")
is_file_uploaded = uploaded_file is not None
if not is_file_uploaded:
uploaded_file = 'sample.wav'
target, sr = librosa.load(uploaded_file)
target = target[:packet_size * (len(target) // packet_size)]
st.text('Ваше аудио')
st.audio(uploaded_file)
st.subheader('2. Выберите желаемый процент потерь')
slider = [st.slider("Ожидаемый процент потерь для генератора потерь цепи Маркова", 0, 100, step=1)]
loss_percent = float(slider[0])/100
mask_gen = MaskGenerator(is_train=False, probs=[(1 - loss_percent, loss_percent)])
lossy_input = target.copy().reshape(-1, packet_size)
mask = mask_gen.gen_mask(len(lossy_input), seed=0)[:, np.newaxis]
lossy_input *= mask
lossy_input = lossy_input.reshape(-1)
hann = torch.sqrt(torch.hann_window(window))
lossy_input_tensor = torch.tensor(lossy_input)
re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(
1).numpy().astype(np.float32)
session, onnx_model, input_names, output_names = load_model()
if st.button('Сгенерировать потери'):
with st.spinner('Ожидайте...'):
output = inference(re_im, session, onnx_model, input_names, output_names)
st.subheader('3. Визуализация')
fig = visualize(target, lossy_input, output, sr)
st.pyplot(fig)
st.success('Сделано!')
sf.write('target.wav', target, sr)
sf.write('lossy.wav', lossy_input, sr)
sf.write('enhanced.wav', output, sr)
st.text('Оригинальное аудио')
st.audio('target.wav')
st.text('Аудио с потерями')
st.audio('lossy.wav')
st.text('Улучшенное аудио')
st.audio('enhanced.wav')
#data_clean, samplerate = torchaudio.load('target.wav')
#data_lossy, samplerate = torchaudio.load('lossy.wav')
#data_enhanced, samplerate = torchaudio.load('enhanced.wav')
#min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
#data_clean = data_clean[:, :min_len]
#data_lossy = data_lossy[:, :min_len]
#data_enhanced = data_enhanced[:, :min_len]
#stoi = STOI(samplerate)
#stoi_orig = round(float(stoi(data_clean, data_clean)),3)
#stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
#stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
#stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
#pesq = PESQ(8000, 'nb')
#data_clean = data_clean.cpu().numpy()
#data_lossy = data_lossy.cpu().numpy()
#data_enhanced = data_enhanced.cpu().numpy()
#if samplerate != 8000:
#data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
#data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
#data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
#pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
#pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
#pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
#psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
#_____________________________________________
data_clean, samplerate = sf.read('target.wav')
data_lossy, samplerate = sf.read('lossy.wav')
data_enhanced, samplerate = sf.read('enhanced.wav')
min_len = min(data_clean.shape[0], data_lossy.shape[0], data_enhanced.shape[0])
data_clean = data_clean[:min_len]
data_lossy = data_lossy[:min_len]
data_enhanced = data_enhanced[:min_len]
stoi_orig = round(stoi(data_clean, data_clean, samplerate, extended=False),5)
stoi_lossy = round(stoi(data_clean, data_lossy , samplerate, extended=False),5)
stoi_enhanced = round(stoi(data_clean, data_enhanced, samplerate, extended=False),5)
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
#def get_power(x, nfft):
# S = librosa.stft(x, n_fft=nfft)
# S = np.log(np.abs(S) ** 2 + 1e-8)
# return S
#def LSD(x_hr, x_pr):
# S1 = get_power(x_hr, nfft=2048)
# S2 = get_power(x_pr, nfft=2048)
# lsd = np.mean(np.sqrt(np.mean((S1 - S2) ** 2, axis=-1)), axis=0)
# return lsd
#lsd_orig = LSD(data_clean,data_clean)
#lsd_lossy = LSD(data_lossy,data_clean)
#lsd_enhanced = LSD(data_enhanced,data_clean)
#lsd_mass=[lsd_orig, lsd_lossy, lsd_enhanced]
if samplerate != 8000:
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
pesq_orig = pesq(fs = 8000, ref = data_clean, deg = data_clean, mode='nb')
pesq_lossy = pesq(fs = 8000, ref = data_clean, deg = data_lossy, mode='nb')
pesq_enhanced = pesq(fs = 8000, ref = data_clean, deg = data_enhanced, mode='nb')
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
data_clean, fs = sf.read('target.wav')
data_lossy, fs = sf.read('lossy.wav')
data_enhanced, fs = sf.read('enhanced.wav')
if fs!= 16000:
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=16000)
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=16000)
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=16000)
PLC_example=PLCMOSEstimator()
PLC_org = PLC_example.run(audio_degraded=data_clean, audio_clean=data_clean)[0]
PLC_lossy = PLC_example.run(audio_degraded=data_lossy, audio_clean=data_clean)[0]
PLC_enhanced = PLC_example.run(audio_degraded=data_enhanced, audio_clean=data_clean)[0]
PLC_massv1 = [PLC_org, PLC_lossy, PLC_enhanced]
df_1 = pd.DataFrame(columns=['Audio', 'PESQ', 'STOI', 'PLCMOSv1'])
df_1['Audio'] = ['Clean', 'Lossy', 'Enhanced']
df_1['PESQ'] = psq_mas
df_1['STOI'] = stoi_mass
#df['LSD'] = lsd_mass
df_1['PLCMOSv1'] = PLC_massv1
#new_columns = pd.MultiIndex.from_tuples([('', 'Audio'), ('Эталонные метрики', 'PESQ'), ('Эталонные метрики', 'STOI'), ('Эталонные метрики', 'PLCMOSv1')])
# Присваиваем новый мультииндекс столбцам
#df_1.columns = new_columns
PLC_massv2 = [plcmos.run("target.wav", sr=16000)['plcmos'], plcmos.run("lossy.wav", sr=16000)['plcmos'], plcmos.run("enhanced.wav", sr=16000)['plcmos']]
#DNS = [dnsmos.run("target.wav", sr=16000)['ovrl_mos'], dnsmos.run("lossy.wav", sr=16000)['ovrl_mos'], dnsmos.run("enhanced.wav", sr=16000)['ovrl_mos']]
df_1['PLCMOSv2'] = PLC_massv2
#df_1['DNSMOS'] = DNS
#df_2 = pd.DataFrame(columns=['DNSMOS', 'PLCMOSv2'])
#df_2['DNSMOS'] = DNS
#df_2['PLCMOSv2'] = PLC_massv2
#new_columns = pd.MultiIndex.from_tuples([('Неэталонные метрики', 'DNSMOS'), ('Неэталонные метрики', 'PLCMOSv2')])
# Присваиваем новый мультииндекс столбцам
#df_2.columns = new_columns
#df_merged = df_1.merge(df_2, left_index=True, right_index=True)
r = sr.Recognizer()
harvard = sr.AudioFile('target.wav')
with harvard as source:
audio = r.record(source)
orig = r.recognize_google(audio, language = "ru-RU")
harvard = sr.AudioFile('lossy.wav')
with harvard as source:
audio = r.record(source)
lossy = r.recognize_google(audio, language = "ru-RU")
harvard = sr.AudioFile('enhanced.wav')
with harvard as source:
audio = r.record(source)
enhanced = r.recognize_google(audio, language = "ru-RU")
error1 = wer(orig, orig)
error2 = wer(orig, lossy)
error2 = wer(orig, enhanced)
WER_mass=[error1, error2, error3]
df_1['WER'] = WER_mass
st.dataframe(df_1)
|