File size: 9,465 Bytes
02e1d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import librosa
import pytorch_lightning as pl
import soundfile as sf
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality as PESQ
from torchmetrics.audio.stoi import ShortTimeObjectiveIntelligibility as STOI
from PLCMOS.plc_mos import PLCMOSEstimator
from config import CONFIG
from loss import Loss
from models.blocks import Encoder, Predictor
from utils.utils import visualize, LSD
plcmos = PLCMOSEstimator()
class PLCModel(pl.LightningModule):
def __init__(self, train_dataset=None, val_dataset=None, window_size=960, enc_layers=4, enc_in_dim=384, enc_dim=768,
pred_dim=512, pred_layers=1, pred_ckpt_path='lightning_logs/predictor/checkpoints/predictor.ckpt'):
super(PLCModel, self).__init__()
self.window_size = window_size
self.hop_size = window_size // 2
self.learning_rate = CONFIG.TRAIN.lr
self.hparams.batch_size = CONFIG.TRAIN.batch_size
self.enc_layers = enc_layers
self.enc_in_dim = enc_in_dim
self.enc_dim = enc_dim
self.pred_dim = pred_dim
self.pred_layers = pred_layers
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.stoi = STOI(48000)
self.pesq = PESQ(16000, 'wb')
if pred_ckpt_path is not None:
self.predictor = Predictor.load_from_checkpoint(pred_ckpt_path)
else:
self.predictor = Predictor(window_size=self.window_size, lstm_dim=self.pred_dim,
lstm_layers=self.pred_layers)
self.joiner = nn.Sequential(
nn.Conv2d(3, 48, kernel_size=(9, 1), stride=1, padding=(4, 0), padding_mode='reflect',
groups=3),
nn.LeakyReLU(0.2),
nn.Conv2d(48, 2, kernel_size=1, stride=1, padding=0, groups=2),
)
self.encoder = Encoder(in_dim=self.window_size, dim=self.enc_in_dim, depth=self.enc_layers,
mlp_dim=self.enc_dim)
self.loss = Loss()
self.window = torch.sqrt(torch.hann_window(self.window_size))
self.save_hyperparameters('window_size', 'enc_layers', 'enc_in_dim', 'enc_dim', 'pred_dim', 'pred_layers')
def forward(self, x):
"""
Input: real-imaginary; shape (B, F, T, 2); F = hop_size + 1
Output: real-imaginary
"""
B, C, F, T = x.shape
x = x.permute(3, 0, 1, 2).unsqueeze(-1)
prev_mag = torch.zeros((B, 1, F, 1), device=x.device)
predictor_state = torch.zeros((2, self.predictor.lstm_layers, B, self.predictor.lstm_dim), device=x.device)
mlp_state = torch.zeros((self.encoder.depth, 2, 1, B, self.encoder.dim), device=x.device)
result = []
for step in x:
feat, mlp_state = self.encoder(step, mlp_state)
prev_mag, predictor_state = self.predictor(prev_mag, predictor_state)
feat = torch.cat((feat, prev_mag), 1)
feat = self.joiner(feat)
feat = feat + step
result.append(feat)
prev_mag = torch.linalg.norm(feat, dim=1, ord=1, keepdims=True) # compute magnitude
output = torch.cat(result, -1)
return output
def forward_onnx(self, x, prev_mag, predictor_state=None, mlp_state=None):
prev_mag, predictor_state = self.predictor(prev_mag, predictor_state)
feat, mlp_state = self.encoder(x, mlp_state)
feat = torch.cat((feat, prev_mag), 1)
feat = self.joiner(feat)
prev_mag = torch.linalg.norm(feat, dim=1, ord=1, keepdims=True)
feat = feat + x
return feat, prev_mag, predictor_state, mlp_state
def train_dataloader(self):
return DataLoader(self.train_dataset, shuffle=False, batch_size=self.hparams.batch_size,
num_workers=CONFIG.TRAIN.workers, persistent_workers=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, shuffle=False, batch_size=self.hparams.batch_size,
num_workers=CONFIG.TRAIN.workers, persistent_workers=True)
def training_step(self, batch, batch_idx):
x_in, y = batch
f_0 = x_in[:, :, 0:1, :]
x = x_in[:, :, 1:, :]
x = self(x)
x = torch.cat([f_0, x], dim=2)
loss = self.loss(x, y)
self.log('train_loss', loss, logger=True)
return loss
def validation_step(self, val_batch, batch_idx):
x, y = val_batch
f_0 = x[:, :, 0:1, :]
x_in = x[:, :, 1:, :]
pred = self(x_in)
pred = torch.cat([f_0, pred], dim=2)
loss = self.loss(pred, y)
self.window = self.window.to(pred.device)
pred = torch.view_as_complex(pred.permute(0, 2, 3, 1).contiguous())
pred = torch.istft(pred, self.window_size, self.hop_size, window=self.window)
y = torch.view_as_complex(y.permute(0, 2, 3, 1).contiguous())
y = torch.istft(y, self.window_size, self.hop_size, window=self.window)
self.log('val_loss', loss, on_step=False, on_epoch=True, logger=True, prog_bar=True, sync_dist=True)
if batch_idx == 0:
i = torch.randint(0, x.shape[0], (1,)).item()
x = torch.view_as_complex(x.permute(0, 2, 3, 1).contiguous())
x = torch.istft(x[i], self.window_size, self.hop_size, window=self.window)
self.trainer.logger.log_spectrogram(y[i], x, pred[i], self.current_epoch)
self.trainer.logger.log_audio(y[i], x, pred[i], self.current_epoch)
def test_step(self, test_batch, batch_idx):
inp, tar, inp_wav, tar_wav = test_batch
inp_wav = inp_wav.squeeze()
tar_wav = tar_wav.squeeze()
f_0 = inp[:, :, 0:1, :]
x = inp[:, :, 1:, :]
pred = self(x)
pred = torch.cat([f_0, pred], dim=2)
pred = torch.istft(pred.squeeze(0).permute(1, 2, 0), self.window_size, self.hop_size,
window=self.window.to(pred.device))
stoi = self.stoi(pred, tar_wav)
tar_wav = tar_wav.cpu().numpy()
inp_wav = inp_wav.cpu().numpy()
pred = pred.detach().cpu().numpy()
lsd, _ = LSD(tar_wav, pred)
if batch_idx in [5, 7, 9]:
sample_path = os.path.join(CONFIG.LOG.sample_path)
path = os.path.join(sample_path, 'sample_' + str(batch_idx))
visualize(tar_wav, inp_wav, pred, path)
sf.write(os.path.join(path, 'enhanced_output.wav'), pred, samplerate=CONFIG.DATA.sr, subtype='PCM_16')
sf.write(os.path.join(path, 'lossy_input.wav'), inp_wav, samplerate=CONFIG.DATA.sr, subtype='PCM_16')
sf.write(os.path.join(path, 'target.wav'), tar_wav, samplerate=CONFIG.DATA.sr, subtype='PCM_16')
if CONFIG.DATA.sr != 16000:
pred = librosa.resample(pred, orig_sr=48000, target_sr=16000)
tar_wav = librosa.resample(tar_wav, orig_sr=48000, target_sr=16000, res_type='kaiser_fast')
ret = plcmos.run(pred, tar_wav)
pesq = self.pesq(torch.tensor(pred), torch.tensor(tar_wav))
metrics = {
"Intrusive": ret[0],
"Non-intrusive": ret[1],
'LSD': lsd,
'STOI': stoi,
'PESQ': pesq,
}
self.log_dict(metrics)
return metrics
def predict_step(self, batch, batch_idx: int, dataloader_idx: int = 0):
f_0 = batch[:, :, 0:1, :]
x = batch[:, :, 1:, :]
pred = self(x)
pred = torch.cat([f_0, pred], dim=2)
pred = torch.istft(pred.squeeze(0).permute(1, 2, 0), self.window_size, self.hop_size,
window=self.window.to(pred.device))
return pred
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=CONFIG.TRAIN.patience,
factor=CONFIG.TRAIN.factor, verbose=True)
scheduler = {
'scheduler': lr_scheduler,
'reduce_on_plateau': True,
'monitor': 'val_loss'
}
return [optimizer], [scheduler]
class OnnxWrapper(pl.LightningModule):
def __init__(self, model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model = model
batch_size = 1
pred_states = torch.zeros((2, 1, batch_size, model.predictor.lstm_dim))
mlp_states = torch.zeros((model.encoder.depth, 2, 1, batch_size, model.encoder.dim))
mag = torch.zeros((batch_size, 1, model.hop_size, 1))
x = torch.randn(batch_size, model.hop_size + 1, 2)
self.sample = (x, mag, pred_states, mlp_states)
self.input_names = ['input', 'mag_in_cached_', 'pred_state_in_cached_', 'mlp_state_in_cached_']
self.output_names = ['output', 'mag_out_cached_', 'pred_state_out_cached_', 'mlp_state_out_cached_']
def forward(self, x, prev_mag, predictor_state=None, mlp_state=None):
x = x.permute(0, 2, 1).unsqueeze(-1)
f_0 = x[:, :, 0:1, :]
x = x[:, :, 1:, :]
output, prev_mag, predictor_state, mlp_state = self.model.forward_onnx(x, prev_mag, predictor_state, mlp_state)
output = torch.cat([f_0, output], dim=2)
output = output.squeeze(-1).permute(0, 2, 1)
return output, prev_mag, predictor_state, mlp_state
|