File size: 5,508 Bytes
687e655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import os

import pytorch_lightning as pl
import soundfile as sf
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.utilities.model_summary import summarize
from torch.utils.data import DataLoader

from config import CONFIG
from dataset import TrainDataset, TestLoader, BlindTestLoader
from models.frn import PLCModel, OnnxWrapper
from utils.tblogger import TensorBoardLoggerExpanded
from utils.utils import mkdir_p

parser = argparse.ArgumentParser()

parser.add_argument('--version', default=None,
                    help='version to resume')
parser.add_argument('--mode', default='train',
                    help='training or testing mode')

args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(CONFIG.gpus)
assert args.mode in ['train', 'eval', 'test', 'onnx'], "--mode should be 'train', 'eval', 'test' or 'onnx'"


def resume(train_dataset, val_dataset, version):
    print("Version", version)
    model_path = os.path.join(CONFIG.LOG.log_dir, 'version_{}/checkpoints/'.format(str(version)))
    config_path = os.path.join(CONFIG.LOG.log_dir, 'version_{}/'.format(str(version)) + 'hparams.yaml')
    model_name = [x for x in os.listdir(model_path) if x.endswith(".ckpt")][0]
    ckpt_path = model_path + model_name
    checkpoint = PLCModel.load_from_checkpoint(ckpt_path,
                                               strict=True,
                                               hparams_file=config_path,
                                               train_dataset=train_dataset,
                                               val_dataset=val_dataset,
                                               window_size=CONFIG.DATA.window_size)

    return checkpoint


def train():
    train_dataset = TrainDataset('train')
    val_dataset = TrainDataset('val')
    checkpoint_callback = ModelCheckpoint(monitor='val_loss', mode='min', verbose=True,
                                          filename='frn-{epoch:02d}-{val_loss:.4f}', save_weights_only=False)
    gpus = CONFIG.gpus.split(',')
    logger = TensorBoardLoggerExpanded(CONFIG.DATA.sr)
    if args.version is not None:
        model = resume(train_dataset, val_dataset, args.version)
    else:
        model = PLCModel(train_dataset,
                         val_dataset,
                         window_size=CONFIG.DATA.window_size,
                         enc_layers=CONFIG.MODEL.enc_layers,
                         enc_in_dim=CONFIG.MODEL.enc_in_dim,
                         enc_dim=CONFIG.MODEL.enc_dim,
                         pred_dim=CONFIG.MODEL.pred_dim,
                         pred_layers=CONFIG.MODEL.pred_layers)

    trainer = pl.Trainer(logger=logger,
                         gradient_clip_val=CONFIG.TRAIN.clipping_val,
                         gpus=len(gpus),
                         max_epochs=CONFIG.TRAIN.epochs,
                         accelerator="gpu" if len(gpus) > 1 else None,
                         callbacks=[checkpoint_callback]
                         )

    print(model.hparams)
    print(
        'Dataset: {}, Train files: {}, Val files {}'.format(CONFIG.DATA.dataset, len(train_dataset), len(val_dataset)))
    trainer.fit(model)


def to_onnx(model, onnx_path):
    model.eval()

    model = OnnxWrapper(model)

    torch.onnx.export(model,
                      model.sample,
                      onnx_path,
                      export_params=True,
                      opset_version=12,
                      input_names=model.input_names,
                      output_names=model.output_names,
                      do_constant_folding=True,
                      verbose=False)


if __name__ == '__main__':

    if args.mode == 'train':
        train()
    else:
        model = resume(None, None, args.version)
        print(model.hparams)
        print(summarize(model))

        model.eval()
        model.freeze()
        if args.mode == 'eval':
            model.cuda(device=0)
            trainer = pl.Trainer(accelerator='gpu', devices=1, enable_checkpointing=False, logger=False)
            testset = TestLoader()
            test_loader = DataLoader(testset, batch_size=1, num_workers=4)
            trainer.test(model, test_loader)
            print('Version', args.version)
            masking = CONFIG.DATA.EVAL.masking
            prob = CONFIG.DATA.EVAL.transition_probs[0]
            loss_percent = (1 - prob[0]) / (2 - prob[0] - prob[1]) * 100
            print('Evaluate with real trace' if masking == 'real' else
                  'Evaluate with generated trace with {:.2f}% packet loss'.format(loss_percent))
        elif args.mode == 'test':
            model.cuda(device=0)
            testset = BlindTestLoader(test_dir=CONFIG.TEST.in_dir)
            test_loader = DataLoader(testset, batch_size=1, num_workers=4)
            trainer = pl.Trainer(accelerator='gpu', devices=1, enable_checkpointing=False, logger=False)
            preds = trainer.predict(model, test_loader, return_predictions=True)
            mkdir_p(CONFIG.TEST.out_dir)
            for idx, path in enumerate(test_loader.dataset.data_list):
                out_path = os.path.join(CONFIG.TEST.out_dir, os.path.basename(path))
                sf.write(out_path, preds[idx], samplerate=CONFIG.DATA.sr, subtype='PCM_16')

        else:
            onnx_path = 'lightning_logs/version_{}/checkpoints/frn.onnx'.format(str(args.version))
            to_onnx(model, onnx_path)
            print('ONNX model saved to', onnx_path)