Spaces:
Sleeping
Sleeping
first-commit
Browse files- .gitignore +3 -0
- app.py +98 -0
- dearth_config.py +106 -0
- dearth_model.py +777 -0
- extract_model.ipynb +55 -0
- requirements.txt +3 -0
- tk/config.json +46 -0
- tk/special_tokens_map.json +23 -0
- tk/tokenizer.json +0 -0
- tk/tokenizer_config.json +33 -0
- tk/vocab.json +0 -0
- ts100-re2-h1-4000-model.pt +3 -0
- ts100-re2-h1.yml +49 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
/flagged/
|
2 |
+
/__pycache__/
|
3 |
+
```
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
|
6 |
+
from dearth_config import DearthConfig
|
7 |
+
from dearth_model import DearthForCausalLM
|
8 |
+
|
9 |
+
import random
|
10 |
+
|
11 |
+
|
12 |
+
tk = transformers.AutoTokenizer.from_pretrained("./tk")
|
13 |
+
|
14 |
+
#model_path = "./ts100-re2-h1-4000.pt"
|
15 |
+
model_path = "./ts100-re2-h1-4000-model.pt"
|
16 |
+
yml_path = "./ts100-re2-h1.yml"
|
17 |
+
with open(yml_path, "r") as f:
|
18 |
+
config = yaml.load(f, Loader=yaml.FullLoader)['model']
|
19 |
+
if "vocab_size" not in config:
|
20 |
+
config['vocab_size'] = tk.vocab_size
|
21 |
+
config["attn_window_size"] = 500
|
22 |
+
print(config)
|
23 |
+
config = DearthConfig(**config)
|
24 |
+
model = DearthForCausalLM(config)
|
25 |
+
states = torch.load(model_path, map_location="cpu")
|
26 |
+
model_states = states
|
27 |
+
unwanted_prefix_dueto_compile = '_orig_mod.'
|
28 |
+
unwanted_prefix_dueto_ddp = 'module.'
|
29 |
+
unwanted_prefix_dueto_ddp_compiled = 'module._orig_mod.'
|
30 |
+
|
31 |
+
for k,v in list(model_states.items()):
|
32 |
+
if k.startswith(unwanted_prefix_dueto_ddp_compiled):
|
33 |
+
new_key = k[len(unwanted_prefix_dueto_ddp_compiled):]
|
34 |
+
model_states[k[len(unwanted_prefix_dueto_ddp_compiled):]] = model_states.pop(k)
|
35 |
+
elif k.startswith(unwanted_prefix_dueto_ddp):
|
36 |
+
new_key = k[len(unwanted_prefix_dueto_ddp):]
|
37 |
+
model_states[k[len(unwanted_prefix_dueto_ddp):]] = model_states.pop(k)
|
38 |
+
elif k.startswith(unwanted_prefix_dueto_compile):
|
39 |
+
new_key = k[len(unwanted_prefix_dueto_compile):]
|
40 |
+
model_states[k[len(unwanted_prefix_dueto_compile):]] = model_states.pop(k)
|
41 |
+
|
42 |
+
model.load_state_dict(model_states)
|
43 |
+
|
44 |
+
|
45 |
+
def generate(input, num_more_tokens):
|
46 |
+
num_more_tokens = int(num_more_tokens)
|
47 |
+
print(input)
|
48 |
+
input = input.strip()
|
49 |
+
input_ids = tk.encode(input)
|
50 |
+
input_ids = [tk.bos_token_id] + input_ids
|
51 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long).view(1, -1)
|
52 |
+
print(input_ids)
|
53 |
+
|
54 |
+
output_ids = input_ids.squeeze(0).tolist()
|
55 |
+
for i in range(num_more_tokens):
|
56 |
+
input = torch.tensor(output_ids, dtype=torch.long).view(1, -1)
|
57 |
+
with torch.no_grad():
|
58 |
+
output = model(input)[0]
|
59 |
+
last_token_logits = output[0, -1, :]
|
60 |
+
last_token_logits_topk = torch.topk(last_token_logits, k=8, dim=-1)
|
61 |
+
probs = torch.softmax(last_token_logits_topk.values, dim=-1)
|
62 |
+
new_token = torch.multinomial(probs, num_samples=1).item()
|
63 |
+
new_token = last_token_logits_topk.indices[new_token].item()
|
64 |
+
if new_token == tk.eos_token_id:
|
65 |
+
break
|
66 |
+
output_ids.append(new_token)
|
67 |
+
|
68 |
+
print(output_ids)
|
69 |
+
print(tk.decode(output_ids))
|
70 |
+
output_ids = output_ids[1:]
|
71 |
+
|
72 |
+
return tk.decode(output_ids)
|
73 |
+
|
74 |
+
example_input = ["Once upon a time, there was a little girl",
|
75 |
+
"John and Sarah were playing together in their backyard when",
|
76 |
+
"It was a warm summer day when Billy and",
|
77 |
+
]
|
78 |
+
|
79 |
+
|
80 |
+
Description = """
|
81 |
+
This is a small language model with 11M parameters, trained with the TinyStories dataset, and distilled from a 28M parameter teacher model.\n
|
82 |
+
This model has been trained with 512M tokens, which is about 0.9 epoch of the TinyStories dataset.\n
|
83 |
+
The PPL on the validation set is 1.7, in comparison, the teacher model has a PPL of 0.9. Lower PPL means better performance.\n
|
84 |
+
"""
|
85 |
+
|
86 |
+
|
87 |
+
server = gr.Interface(
|
88 |
+
fn=generate,
|
89 |
+
title="Tinystories LM 11M",
|
90 |
+
description=Description,
|
91 |
+
inputs=[
|
92 |
+
gr.Textbox(lines=5, label="Input Text", value=example_input[random.randint(0, len(example_input)-1)]),
|
93 |
+
gr.Slider(16, 64, step=1.0, value=32, label="more tokens", info="")
|
94 |
+
],
|
95 |
+
outputs="text"
|
96 |
+
)
|
97 |
+
|
98 |
+
server.launch()
|
dearth_config.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class DearthConfig(PretrainedConfig):
|
4 |
+
model_type = "dearth"
|
5 |
+
def __init__(
|
6 |
+
self,
|
7 |
+
max_token_len: int = 8192,
|
8 |
+
vocab_size: int = None, # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
|
9 |
+
n_layer: int = None,
|
10 |
+
n_head: int = None,
|
11 |
+
n_kv_head: int = None,
|
12 |
+
dim: int = None,
|
13 |
+
dim_qk_head = None,
|
14 |
+
hidden_dim: int = None,
|
15 |
+
multiple_of: int = None,
|
16 |
+
dropout_rate: float = 0.0,
|
17 |
+
layer_init_factor: float = None,
|
18 |
+
residual_factor: float = None, # should > 1.0
|
19 |
+
sliding_window_size: int = 4096,
|
20 |
+
front_window_size: int = 256,
|
21 |
+
use_rotary: bool = True,
|
22 |
+
rope_theta: float = 10000.0,
|
23 |
+
use_alibi: bool = False,
|
24 |
+
|
25 |
+
mimic_attn_layer: int = None, # 1-based, starting from the bottom; The first layer should be 1, not 0
|
26 |
+
mimic_n_head: int = None,
|
27 |
+
mimic_n_kv_head: int = None,
|
28 |
+
mimic_attn_dropout: float = None,
|
29 |
+
mimic_dim_qk_head: int = None,
|
30 |
+
mimic_use_rotary: bool = True,
|
31 |
+
mimic_use_alibi: bool = False,
|
32 |
+
|
33 |
+
pad_token_id=None,
|
34 |
+
bos_token_id=1,
|
35 |
+
eos_token_id=2,
|
36 |
+
tie_word_embeddings=False,
|
37 |
+
**kwargs,
|
38 |
+
):
|
39 |
+
self.max_token_len = max_token_len
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.n_layer = n_layer
|
42 |
+
self.n_head = n_head
|
43 |
+
self.n_kv_head = n_kv_head
|
44 |
+
self.dim = dim
|
45 |
+
self.dim_qk_head = dim_qk_head
|
46 |
+
self.hidden_dim = hidden_dim
|
47 |
+
if hidden_dim is None:
|
48 |
+
self.hidden_dim = dim * 4
|
49 |
+
print(f"hidden_dim is not specified. Set to {self.hidden_dim}")
|
50 |
+
self.multiple_of = multiple_of
|
51 |
+
self.dropout_rate = dropout_rate
|
52 |
+
self.layer_init_factor = layer_init_factor
|
53 |
+
self.residual_factor = residual_factor
|
54 |
+
self.sliding_window_size = sliding_window_size
|
55 |
+
self.front_window_size = front_window_size
|
56 |
+
self.use_rotary = use_rotary
|
57 |
+
self.rope_theta = rope_theta
|
58 |
+
self.use_alibi = use_alibi
|
59 |
+
|
60 |
+
self.mimic_attn_layer = mimic_attn_layer
|
61 |
+
self.mimic_n_head = mimic_n_head
|
62 |
+
self.mimic_n_kv_head = mimic_n_kv_head
|
63 |
+
self.mimic_attn_dropout = mimic_attn_dropout
|
64 |
+
self.mimic_dim_qk_head = mimic_dim_qk_head
|
65 |
+
self.mimic_use_rotary = mimic_use_rotary
|
66 |
+
self.mimic_use_alibi = mimic_use_alibi
|
67 |
+
|
68 |
+
if "attn_window_size" in kwargs:
|
69 |
+
print("Warning: attn_window_size is deprecated. Please use sliding_window_size instead !!!!!!!!!!!")
|
70 |
+
self.sliding_window_size = kwargs["attn_window_size"]
|
71 |
+
|
72 |
+
super().__init__(
|
73 |
+
pad_token_id=pad_token_id,
|
74 |
+
bos_token_id=bos_token_id,
|
75 |
+
eos_token_id=eos_token_id,
|
76 |
+
tie_word_embeddings=tie_word_embeddings,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
def __str__(self) -> str:
|
81 |
+
return f"""
|
82 |
+
max_token_len = {self.max_token_len}
|
83 |
+
vocab_size = {self.vocab_size}
|
84 |
+
n_layer = {self.n_layer}
|
85 |
+
n_head = {self.n_head}
|
86 |
+
n_kv_head = {self.n_kv_head}
|
87 |
+
dim = {self.dim}
|
88 |
+
dim_qk_head = {self.dim_qk_head}
|
89 |
+
hidden_dim = {self.hidden_dim}
|
90 |
+
multiple_of = {self.multiple_of}
|
91 |
+
dropout_rate = {self.dropout_rate}
|
92 |
+
layer_init_factor = {self.layer_init_factor}
|
93 |
+
residual_factor = {self.residual_factor}
|
94 |
+
sliding_window_size = {self.sliding_window_size}
|
95 |
+
front_window_size = {self.front_window_size}
|
96 |
+
use_rotary = {self.use_rotary}
|
97 |
+
use_alibi = {self.use_alibi}
|
98 |
+
|
99 |
+
mimic_attn_layer = {self.mimic_attn_layer}
|
100 |
+
mimic_n_head = {self.mimic_n_head}
|
101 |
+
mimic_n_kv_head = {self.mimic_n_kv_head}
|
102 |
+
mimic_attn_dropout = {self.mimic_attn_dropout}
|
103 |
+
mimic_dim_qk_head = {self.mimic_dim_qk_head}
|
104 |
+
mimic_use_rotary = {self.mimic_use_rotary}
|
105 |
+
mimic_use_alibi = {self.mimic_use_alibi}
|
106 |
+
"""
|
dearth_model.py
ADDED
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from torch import Tensor
|
5 |
+
from typing import Optional, Tuple
|
6 |
+
import math
|
7 |
+
|
8 |
+
import logging
|
9 |
+
import copy
|
10 |
+
|
11 |
+
from dearth_config import DearthConfig
|
12 |
+
|
13 |
+
_USE_FAST_ROPE = False
|
14 |
+
|
15 |
+
class RMSNorm(torch.nn.Module): # a variant of LayerNorm that is faster and more memory efficient
|
16 |
+
def __init__(self, dim: int, eps: float = 1e-5):
|
17 |
+
super().__init__()
|
18 |
+
self.eps = eps
|
19 |
+
# set the weight to be 1 initially
|
20 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
21 |
+
|
22 |
+
def _norm(self, x):
|
23 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
output = self._norm(x.float()).type_as(x)
|
27 |
+
return output * self.weight
|
28 |
+
|
29 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding
|
30 |
+
class RotaryEmbedding(nn.Module):
|
31 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.dim = dim
|
35 |
+
self.max_position_embeddings = max_position_embeddings
|
36 |
+
self.base = base
|
37 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
38 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
39 |
+
|
40 |
+
# Build here to make `torch.jit.trace` work.
|
41 |
+
self._set_cos_sin_cache(
|
42 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
43 |
+
)
|
44 |
+
|
45 |
+
self.register_buffer("default_pos_ids",
|
46 |
+
torch.arange(0, self.max_position_embeddings, dtype=torch.long).view(-1, self.max_position_embeddings),
|
47 |
+
persistent=False)
|
48 |
+
|
49 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
50 |
+
self.max_seq_len_cached = seq_len
|
51 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
52 |
+
|
53 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
54 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
55 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
56 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) # shape: (max_seq_len_cached, dim // 2)
|
57 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
58 |
+
|
59 |
+
def forward(self, x, seq_len=None):
|
60 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
61 |
+
if seq_len > self.max_seq_len_cached:
|
62 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
63 |
+
|
64 |
+
return (
|
65 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
66 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
67 |
+
)
|
68 |
+
|
69 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
70 |
+
def rotate_half(x):
|
71 |
+
"""Rotates half the hidden dims of the input."""
|
72 |
+
x1 = x[..., : x.shape[-1] // 2]
|
73 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
74 |
+
return torch.cat((-x2, x1), dim=-1)
|
75 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
76 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
77 |
+
cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
|
78 |
+
sin = sin[position_ids].unsqueeze(1)
|
79 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
80 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
81 |
+
return q_embed, k_embed
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
class FastRope(nn.Module):
|
87 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
self.dim = dim
|
91 |
+
self.max_position_embeddings = max_position_embeddings
|
92 |
+
cis = precompute_freqs_cis(dim, max_position_embeddings, theta=base)
|
93 |
+
self.register_buffer("cis", cis, persistent=False)
|
94 |
+
|
95 |
+
def forward(self, start_idx, seq_len):
|
96 |
+
return self.cis[start_idx:start_idx+seq_len, :]
|
97 |
+
|
98 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
99 |
+
"""
|
100 |
+
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
101 |
+
|
102 |
+
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
103 |
+
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
104 |
+
The returned tensor contains complex values in complex64 data type.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
dim (int): Dimension of the frequency tensor.
|
108 |
+
end (int): End index for precomputing frequencies.
|
109 |
+
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
torch.Tensor: Precomputed frequency tensor with complex exponentials.
|
113 |
+
"""
|
114 |
+
with torch.no_grad():
|
115 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
116 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
117 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
118 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
119 |
+
return freqs_cis
|
120 |
+
|
121 |
+
def apply_rotary_emb(
|
122 |
+
xq: torch.Tensor,
|
123 |
+
xk: torch.Tensor,
|
124 |
+
freqs_cis: torch.Tensor,
|
125 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
126 |
+
"""
|
127 |
+
Apply rotary embeddings to input tensors using the given frequency tensor.
|
128 |
+
|
129 |
+
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
130 |
+
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
131 |
+
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
132 |
+
returned as real tensors.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
xq (torch.Tensor): Query tensor to apply rotary embeddings.
|
136 |
+
xk (torch.Tensor): Key tensor to apply rotary embeddings.
|
137 |
+
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
141 |
+
"""
|
142 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
143 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
144 |
+
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
145 |
+
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
146 |
+
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
147 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
148 |
+
|
149 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
150 |
+
"""
|
151 |
+
Reshape frequency tensor for broadcasting it with another tensor.
|
152 |
+
|
153 |
+
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
154 |
+
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
|
158 |
+
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
torch.Tensor: Reshaped frequency tensor.
|
162 |
+
|
163 |
+
Raises:
|
164 |
+
AssertionError: If the frequency tensor doesn't match the expected shape.
|
165 |
+
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
|
166 |
+
"""
|
167 |
+
ndim = x.ndim
|
168 |
+
assert 0 <= 1 < ndim
|
169 |
+
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f"freqs_cis.shape: {freqs_cis.shape}, x.shape: {x.shape}"
|
170 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
171 |
+
return freqs_cis.view(*shape)
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
class AttentionMask(nn.Module):
|
177 |
+
attn_mask: torch.Tensor = None
|
178 |
+
def __init__(self, config: DearthConfig):
|
179 |
+
super().__init__()
|
180 |
+
self.config = config
|
181 |
+
self.sliding_window_size = config.sliding_window_size
|
182 |
+
self.front_window_size = config.front_window_size
|
183 |
+
if self.attn_mask is None:
|
184 |
+
tmp_attn_mask = self.build_causal_and_window_mask(config.max_token_len, config.sliding_window_size, config.front_window_size)
|
185 |
+
self.attn_mask = tmp_attn_mask.requires_grad_(False) # shape: (max_token_len, max_token_len)
|
186 |
+
#self.register_buffer("attn_mask", self.build_causal_and_window_mask(config.max_token_len, config.sliding_window_size, config.front_window_size).requires_grad_(False), persistent=False)
|
187 |
+
|
188 |
+
def forward(self, bz, n_head, q_seq_len, kv_seq_len, q_start_idx: int, device, dtype) -> torch.Tensor:
|
189 |
+
if self.attn_mask.device != device or self.attn_mask.dtype != dtype:
|
190 |
+
self.attn_mask = self.attn_mask.to(device=device, dtype=dtype).requires_grad_(False)
|
191 |
+
end_idx = q_start_idx + q_seq_len
|
192 |
+
q_k_diff_len = kv_seq_len - q_seq_len # it should be >= 0, because it is meaningless to attend future tokens
|
193 |
+
top = q_start_idx
|
194 |
+
bottom = end_idx
|
195 |
+
if q_start_idx == 0 and q_k_diff_len == 0:
|
196 |
+
# assume: sliding window size = 100, front window size = 50
|
197 |
+
# case 1: training: q_start_idx = 0, q_seq_len = 1000, kv_seq_len = 1000
|
198 |
+
mask = self.attn_mask[:end_idx, :end_idx]
|
199 |
+
elif q_k_diff_len > 0 and q_start_idx > 0 and end_idx >= kv_seq_len:
|
200 |
+
# TODO: not allow in training; remove this line after testing
|
201 |
+
raise RuntimeError(f"NOT FOR TRAINING: q_start_idx = {q_start_idx}, q_seq_len = {q_seq_len}, kv_seq_len = {kv_seq_len}")
|
202 |
+
if end_idx > self.front_window_size + self.sliding_window_size:
|
203 |
+
# case 2: qsl < kvsl: q_start_idx = 190, q_seq_len = 10, kv_seq_len = 150, end_idx = 200
|
204 |
+
# mask = self.attn_mask[top:bottom, :self.front_window_size] + \
|
205 |
+
# self.attn_mask[q_start_idx:end_idx, end_idx - (kv_seq_len - self.front_window_size):end_idx]
|
206 |
+
mask = torch.cat([self.attn_mask[top:bottom, :self.front_window_size], self.attn_mask[top:bottom, end_idx - (kv_seq_len - self.front_window_size):end_idx]], dim=-1)
|
207 |
+
elif end_idx <= self.front_window_size + self.sliding_window_size:
|
208 |
+
# case 3: qsl < kvsl: q_start_idx = 140, q_seq_len = 10, kv_seq_len = 150, end_idx = 150
|
209 |
+
mask = self.attn_mask[top:bottom, :end_idx]
|
210 |
+
else:
|
211 |
+
raise RuntimeError(f"q_start_idx = {q_start_idx}, q_seq_len = {q_seq_len}, kv_seq_len = {kv_seq_len}")
|
212 |
+
return mask.expand(bz, n_head, q_seq_len, kv_seq_len).detach()
|
213 |
+
|
214 |
+
|
215 |
+
@staticmethod
|
216 |
+
def build_causal_and_window_mask(seq_len, sliding_window_size, front_window_size) -> torch.Tensor:
|
217 |
+
mask = torch.ones(seq_len, seq_len)
|
218 |
+
if seq_len > sliding_window_size: # need to apply sliding window mask, beacause the sequence is too long
|
219 |
+
mask = torch.triu(mask, diagonal=-sliding_window_size+1)
|
220 |
+
if front_window_size > 0:
|
221 |
+
tmp_front_mask = torch.cat([torch.ones(seq_len, front_window_size), torch.zeros(seq_len, seq_len-front_window_size)], dim=-1)
|
222 |
+
tmp_front_mask = torch.tril(tmp_front_mask, diagonal=-sliding_window_size)
|
223 |
+
mask = mask + tmp_front_mask
|
224 |
+
# apply causal mask
|
225 |
+
mask = mask.tril(diagonal=0)
|
226 |
+
mask = mask.log() # map 0 to -inf, 1 to 0
|
227 |
+
# print(f"mask.shape: {mask.shape}, and mask")
|
228 |
+
# print(mask)
|
229 |
+
return mask
|
230 |
+
|
231 |
+
|
232 |
+
class SharedAttentionMask(nn.Module):
|
233 |
+
def __init__(self, config: DearthConfig):
|
234 |
+
super().__init__()
|
235 |
+
self.config = config
|
236 |
+
self.sliding_window_size = config.sliding_window_size
|
237 |
+
self.front_window_size = config.front_window_size
|
238 |
+
tmp_attn_mask = self.build_causal_and_window_mask(config.max_token_len, config.sliding_window_size, config.front_window_size)
|
239 |
+
self.register_buffer("attn_mask", tmp_attn_mask, persistent=False)
|
240 |
+
|
241 |
+
def forward(self, q_seq_len, kv_seq_len, q_start_idx: int) -> torch.Tensor:
|
242 |
+
end_idx = q_start_idx + q_seq_len
|
243 |
+
q_k_diff_len = kv_seq_len - q_seq_len # it should be >= 0, because it is meaningless to attend future tokens
|
244 |
+
top = q_start_idx
|
245 |
+
bottom = end_idx
|
246 |
+
if q_start_idx == 0 and q_k_diff_len == 0:
|
247 |
+
# assume: sliding window size = 100, front window size = 50
|
248 |
+
# case 1: training: q_start_idx = 0, q_seq_len = 1000, kv_seq_len = 1000
|
249 |
+
mask = self.attn_mask[:end_idx, :end_idx]
|
250 |
+
elif q_k_diff_len > 0 and q_start_idx > 0 and end_idx >= kv_seq_len:
|
251 |
+
# TODO: not allow in training; remove this line after testing
|
252 |
+
raise RuntimeError(f"NOT FOR TRAINING: q_start_idx = {q_start_idx}, q_seq_len = {q_seq_len}, kv_seq_len = {kv_seq_len}")
|
253 |
+
if end_idx > self.front_window_size + self.sliding_window_size:
|
254 |
+
# case 2: qsl < kvsl: q_start_idx = 190, q_seq_len = 10, kv_seq_len = 150, end_idx = 200
|
255 |
+
# mask = self.attn_mask[top:bottom, :self.front_window_size] + \
|
256 |
+
# self.attn_mask[q_start_idx:end_idx, end_idx - (kv_seq_len - self.front_window_size):end_idx]
|
257 |
+
mask = torch.cat([self.attn_mask[top:bottom, :self.front_window_size], self.attn_mask[top:bottom, end_idx - (kv_seq_len - self.front_window_size):end_idx]], dim=-1)
|
258 |
+
elif end_idx <= self.front_window_size + self.sliding_window_size:
|
259 |
+
# case 3: qsl < kvsl: q_start_idx = 140, q_seq_len = 10, kv_seq_len = 150, end_idx = 150
|
260 |
+
mask = self.attn_mask[top:bottom, :end_idx]
|
261 |
+
else:
|
262 |
+
raise RuntimeError(f"q_start_idx = {q_start_idx}, q_seq_len = {q_seq_len}, kv_seq_len = {kv_seq_len}")
|
263 |
+
return mask.detach() # shape: (1, 1, seqlen, seqlen)
|
264 |
+
|
265 |
+
|
266 |
+
@staticmethod
|
267 |
+
def build_causal_and_window_mask(seq_len, sliding_window_size, front_window_size) -> torch.Tensor:
|
268 |
+
mask = torch.ones(seq_len, seq_len)
|
269 |
+
if seq_len > sliding_window_size: # need to apply sliding window mask, beacause the sequence is too long
|
270 |
+
mask = torch.triu(mask, diagonal=-sliding_window_size+1)
|
271 |
+
if front_window_size > 0:
|
272 |
+
tmp_front_mask = torch.cat([torch.ones(seq_len, front_window_size), torch.zeros(seq_len, seq_len-front_window_size)], dim=-1)
|
273 |
+
tmp_front_mask = torch.tril(tmp_front_mask, diagonal=-sliding_window_size)
|
274 |
+
mask = mask + tmp_front_mask
|
275 |
+
# apply causal mask
|
276 |
+
mask = mask.tril(diagonal=0)
|
277 |
+
mask = mask.log() # map 0 to -inf, 1 to 0
|
278 |
+
# print(f"mask.shape: {mask.shape}, and mask")
|
279 |
+
# print(mask)
|
280 |
+
return mask
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
def build_mpt_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None):
|
285 |
+
r"""
|
286 |
+
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
|
287 |
+
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
|
288 |
+
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
|
289 |
+
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
|
290 |
+
|
291 |
+
retrun shape: (1, num_heads, 1, sequence_length)
|
292 |
+
"""
|
293 |
+
alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length)
|
294 |
+
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))
|
295 |
+
|
296 |
+
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.float32, device=device)
|
297 |
+
base = base * (alibi_bias_max / num_heads_power_of_2)
|
298 |
+
|
299 |
+
slopes = 1.0 / torch.pow(2, base)
|
300 |
+
slopes = slopes.view(1, num_heads, 1, 1)
|
301 |
+
|
302 |
+
if num_heads_power_of_2 != num_heads:
|
303 |
+
slopes = torch.concat([slopes[1::2], slopes[::2]])[:num_heads]
|
304 |
+
|
305 |
+
alibi = alibi * slopes
|
306 |
+
return alibi
|
307 |
+
|
308 |
+
|
309 |
+
# def build_alibi_tensor(num_heads, sequence_length, alibi_bias_max=8, device=None):
|
310 |
+
# r"""
|
311 |
+
# Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
|
312 |
+
# relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
|
313 |
+
# the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
|
314 |
+
# https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
|
315 |
+
|
316 |
+
# retrun shape: (1, num_heads, 1, sequence_length)
|
317 |
+
# """
|
318 |
+
# slope = []
|
319 |
+
# m_power = (-8/num_heads)
|
320 |
+
# m_increace = -8/num_heads
|
321 |
+
# for i in range(num_heads):
|
322 |
+
# slope.append(m_power)
|
323 |
+
# m_power += m_increace
|
324 |
+
# slope = torch.tensor(slope, device=device)
|
325 |
+
# alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length)
|
326 |
+
# alibi = alibi * slope.view(1, num_heads, 1, 1)
|
327 |
+
# return alibi
|
328 |
+
|
329 |
+
def compute_alibi(num_heads, sequence_length, alibi_bias_max=8, device=None):
|
330 |
+
r"""
|
331 |
+
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
|
332 |
+
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
|
333 |
+
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
|
334 |
+
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
|
335 |
+
|
336 |
+
retrun shape: (1, num_heads, 1, sequence_length)
|
337 |
+
"""
|
338 |
+
slope = []
|
339 |
+
m_power = (-8/num_heads)
|
340 |
+
m_increace = -8/num_heads
|
341 |
+
for i in range(num_heads):
|
342 |
+
slope.append(2 ** m_power)
|
343 |
+
m_power += m_increace
|
344 |
+
slope = torch.tensor(slope, device=device)
|
345 |
+
alibi = torch.arange(1 - sequence_length, 1, dtype=torch.int32, device=device).view(1, 1, 1, sequence_length)
|
346 |
+
alibi = alibi * slope.view(1, num_heads, 1, 1)
|
347 |
+
return alibi
|
348 |
+
|
349 |
+
|
350 |
+
class Attention(nn.Module):
|
351 |
+
def __init__(self, config: DearthConfig):
|
352 |
+
super().__init__()
|
353 |
+
assert config.dim % config.n_head == 0
|
354 |
+
|
355 |
+
# regularization
|
356 |
+
self.n_head = config.n_head
|
357 |
+
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head
|
358 |
+
self.dim = config.dim
|
359 |
+
assert config.dim % config.n_head == 0
|
360 |
+
self.dim_qk_head = config.dim_qk_head if config.dim_qk_head is not None else config.dim // config.n_head
|
361 |
+
self.dim_v_head = config.dim // config.n_head
|
362 |
+
assert config.n_kv_head <= config.n_head and config.n_head % config.n_kv_head == 0
|
363 |
+
self.n_kv_group = config.n_head // config.n_kv_head
|
364 |
+
self.dropout_rate = config.dropout_rate
|
365 |
+
|
366 |
+
self.alibi_emb = None
|
367 |
+
self.pos_emb = None
|
368 |
+
|
369 |
+
self.sliding_window_size = config.sliding_window_size
|
370 |
+
|
371 |
+
def _fill_with_neg_inf(t):
|
372 |
+
"""FP16-compatible function that fills a tensor with -inf."""
|
373 |
+
return t.float().fill_(float("-inf")).type_as(t)
|
374 |
+
|
375 |
+
# neg_inf_mask = _fill_with_neg_inf(torch.ones_like(torch.empty(config.max_token_len, config.max_token_len)))
|
376 |
+
# window_size_mask = torch.triu(neg_inf_mask, diagonal=1)
|
377 |
+
# if config.sliding_window_size is not None and config.max_token_len > config.sliding_window_size:
|
378 |
+
# window_size_mask = window_size_mask + torch.tril(neg_inf_mask, diagonal=-config.sliding_window_size)
|
379 |
+
# self.register_buffer("window_size_mask", window_size_mask, persistent=False)
|
380 |
+
# if config.use_alibi:
|
381 |
+
# alibi_emb = compute_alibi(config.n_head, config.max_token_len) # shape: (1, n_head, 1, seqlen)
|
382 |
+
# #self.alibi_emb = self.alibi_emb.expand(1, config.n_head, config.max_token_len, config.max_token_len) # shape: (1, n_head, seqlen, seqlen)
|
383 |
+
# self.register_buffer("alibi_emb", alibi_emb, persistent=False)
|
384 |
+
|
385 |
+
self.window_size_mask = AttentionMask(config)
|
386 |
+
|
387 |
+
if config.use_rotary:
|
388 |
+
if not _USE_FAST_ROPE:
|
389 |
+
self.pos_emb = RotaryEmbedding(
|
390 |
+
self.dim_qk_head,
|
391 |
+
max_position_embeddings=config.max_token_len,
|
392 |
+
base=config.rope_theta,
|
393 |
+
)
|
394 |
+
if _USE_FAST_ROPE:
|
395 |
+
self.pos_emb = FastRope(
|
396 |
+
self.dim_qk_head,
|
397 |
+
max_position_embeddings=config.max_token_len,
|
398 |
+
base=config.rope_theta,
|
399 |
+
)
|
400 |
+
|
401 |
+
# query, key, values projections for all heads
|
402 |
+
self.wq = nn.Linear(self.dim, self.n_head * self.dim_qk_head, bias=True)
|
403 |
+
self.wk = nn.Linear(self.dim, self.n_kv_head * self.dim_qk_head, bias=True)
|
404 |
+
self.wv = nn.Linear(self.dim, self.dim // self.n_kv_group, bias=False)
|
405 |
+
self.wo = nn.Linear(self.dim, self.dim, bias=False)
|
406 |
+
|
407 |
+
|
408 |
+
def forward(self, x: Tensor, attn_mask: Tensor, start_idx: Optional[int] = 0):
|
409 |
+
batch_size, seqlen, emb_dim = x.size() # batch size, sequence length, embedding dimensionality (dim)
|
410 |
+
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
411 |
+
|
412 |
+
# split embedding dim into number of heads
|
413 |
+
xq = xq.view(batch_size, seqlen, self.n_head, self.dim_qk_head)
|
414 |
+
xk = xk.view(batch_size, seqlen, self.n_kv_head, self.dim_qk_head)
|
415 |
+
xv = xv.view(batch_size, seqlen, self.n_kv_head, self.dim_v_head)
|
416 |
+
|
417 |
+
if self.pos_emb is not None and _USE_FAST_ROPE:
|
418 |
+
xq, xk = apply_rotary_emb(xq, xk, self.pos_emb(start_idx, seqlen))
|
419 |
+
|
420 |
+
# transpose to get dimensions batch_size * n_head * seqlen * emb_dim
|
421 |
+
xq, xk, xv = xq.transpose(1, 2), xk.transpose(1, 2), xv.transpose(1, 2)
|
422 |
+
kv_seqlen = xk.size(2)
|
423 |
+
|
424 |
+
# apply positional embeddings
|
425 |
+
if self.pos_emb is not None and not _USE_FAST_ROPE:
|
426 |
+
# self.pos_emb = self.pos_emb.to(x.device, dtype=x.dtype)
|
427 |
+
# xq, xk = apply_rotary_pos_emb(xq, xk, self.pos_emb[start_idx:start_idx+seqlen])
|
428 |
+
cos, sin = self.pos_emb(xv, seq_len=kv_seqlen)
|
429 |
+
xq, xk = apply_rotary_pos_emb(xq, xk, cos, sin, self.pos_emb.default_pos_ids[:, :kv_seqlen])
|
430 |
+
|
431 |
+
# TODO: add cache for fast inference
|
432 |
+
|
433 |
+
|
434 |
+
# grouped query
|
435 |
+
xk = repeat_kv(xk, self.n_kv_group)
|
436 |
+
xv = repeat_kv(xv, self.n_kv_group)
|
437 |
+
|
438 |
+
# self.window_size_mask = self.window_size_mask.to(x.device, dtype=x.dtype)
|
439 |
+
# attn_mask = self.window_size_mask[start_idx:start_idx+seqlen, start_idx:start_idx+kv_seqlen]
|
440 |
+
# attn_mask = attn_mask.unsqueeze(0).unsqueeze(0) # shape: (1, 1, seqlen, seqlen)
|
441 |
+
# attn_mask = attn_mask.expand(batch_size, self.n_head, seqlen, kv_seqlen) # shape: (batch_size, n_head, seqlen, seqlen)
|
442 |
+
# if self.alibi_emb is not None:
|
443 |
+
# self.alibi_emb = self.alibi_emb.to(x.device, dtype=x.dtype)
|
444 |
+
# attn_mask = attn_mask + self.alibi_emb[:,:,:,:kv_seqlen]
|
445 |
+
|
446 |
+
#attn_mask = self.window_size_mask(batch_size, self.n_head, seqlen, kv_seqlen, start_idx, x.device, x.dtype) # -inf or 0
|
447 |
+
|
448 |
+
# efficient attention using Flash Attention CUDA kernels
|
449 |
+
y = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=self.dropout_rate if self.training else 0)
|
450 |
+
y = y.transpose(1, 2).contiguous().view(batch_size, seqlen, emb_dim) # merge heads
|
451 |
+
|
452 |
+
# output projection
|
453 |
+
return self.wo(y)
|
454 |
+
|
455 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
456 |
+
"""
|
457 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
458 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
459 |
+
hidden_states.shape = (batch, n_kv_head, seqlen, head_dim)
|
460 |
+
"""
|
461 |
+
# if n_rep == 1:
|
462 |
+
# return hidden_states
|
463 |
+
# return torch.repeat_interleave(hidden_states, n_rep, dim=1)
|
464 |
+
|
465 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
466 |
+
if n_rep == 1:
|
467 |
+
return hidden_states
|
468 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
469 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
470 |
+
|
471 |
+
# def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
472 |
+
# """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
473 |
+
# bs, slen, n_kv_heads, head_dim = x.shape
|
474 |
+
# if n_rep == 1:
|
475 |
+
# return x
|
476 |
+
# return (
|
477 |
+
# x[:, :, :, None, :]
|
478 |
+
# .expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
479 |
+
# .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
480 |
+
# )
|
481 |
+
|
482 |
+
class MLP(nn.Module):
|
483 |
+
def __init__(self, config):
|
484 |
+
super().__init__()
|
485 |
+
dim = config.dim
|
486 |
+
hidden_dim = config.dim * 4 if config.hidden_dim is None else config.hidden_dim
|
487 |
+
multiple_of = 64 if config.multiple_of is None else config.multiple_of
|
488 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
489 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) # round up to nearest multiple of multiple_of
|
490 |
+
|
491 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
492 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
493 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
494 |
+
|
495 |
+
def forward(self, x):
|
496 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
497 |
+
|
498 |
+
class Mimic_Attn(Attention):
|
499 |
+
def __init__(self, config):
|
500 |
+
new_config = copy.deepcopy(config)
|
501 |
+
new_config.n_head = config.mimic_n_head if config.mimic_n_head is not None else config.n_head
|
502 |
+
new_config.n_kv_head = config.mimic_n_kv_head if config.mimic_n_kv_head is not None else config.n_kv_head
|
503 |
+
new_config.dim_qk_head = config.mimic_dim_qk_head if config.mimic_dim_qk_head is not None else config.dim_qk_head
|
504 |
+
new_config.dropout_rate = config.mimic_attn_dropout if config.mimic_attn_dropout is not None else 0.0
|
505 |
+
new_config.use_rotary = config.mimic_use_rotary if config.mimic_use_rotary is not None else config.use_rotary
|
506 |
+
new_config.use_alibi = config.mimic_use_alibi if config.mimic_use_alibi is not None else config.use_alibi
|
507 |
+
|
508 |
+
super().__init__(new_config)
|
509 |
+
self.saved_q = None
|
510 |
+
self.saved_k = None
|
511 |
+
self.saved_v = None
|
512 |
+
self.saved_attn_map = None
|
513 |
+
|
514 |
+
def forward(self, x: Tensor, attn_mask: Tensor, start_idx: Optional[int] = 0): # shape of attn_mask: (bz, n_head, q_seq_len, kv_seq_len)
|
515 |
+
batch_size, seqlen, emb_dim = x.size() # batch size, sequence length, embedding dimensionality (dim)
|
516 |
+
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
517 |
+
self.saved_v = xv
|
518 |
+
|
519 |
+
# split embedding dim into number of heads
|
520 |
+
xq = xq.view(batch_size, seqlen, self.n_head, self.dim_qk_head)
|
521 |
+
xk = xk.view(batch_size, seqlen, self.n_kv_head, self.dim_qk_head)
|
522 |
+
xv = xv.view(batch_size, seqlen, self.n_kv_head, self.dim_v_head)
|
523 |
+
|
524 |
+
if self.pos_emb is not None and _USE_FAST_ROPE:
|
525 |
+
xq, xk = apply_rotary_emb(xq, xk, self.pos_emb(start_idx, seqlen))
|
526 |
+
|
527 |
+
# transpose to get dimensions batch_size * n_head * seqlen * emb_dim
|
528 |
+
xq, xk, xv = xq.transpose(1, 2), xk.transpose(1, 2), xv.transpose(1, 2)
|
529 |
+
kv_seqlen = xk.size(2)
|
530 |
+
|
531 |
+
# # apply positional embeddings
|
532 |
+
# if self.pos_emb is not None:
|
533 |
+
# self.pos_emb = self.pos_emb.to(x.device)
|
534 |
+
# xq, xk = apply_pos_emb(xq, xk, self.pos_emb[start_idx:start_idx+seqlen])
|
535 |
+
if self.pos_emb is not None and not _USE_FAST_ROPE:
|
536 |
+
cos, sin = self.pos_emb(xv, seq_len=kv_seqlen)
|
537 |
+
xq, xk = apply_rotary_pos_emb(xq, xk, cos, sin, self.pos_emb.default_pos_ids[:, :kv_seqlen])
|
538 |
+
|
539 |
+
# TODO: add cache for fast inference
|
540 |
+
|
541 |
+
# grouped query
|
542 |
+
xk = repeat_kv(xk, self.n_kv_group)
|
543 |
+
xv = repeat_kv(xv, self.n_kv_group)
|
544 |
+
|
545 |
+
# self.window_size_mask = self.window_size_mask.to(x.device)
|
546 |
+
# kv_seqlen = xk.size(2)
|
547 |
+
# attn_mask = self.window_size_mask[start_idx:start_idx+seqlen, start_idx:start_idx+kv_seqlen]
|
548 |
+
# attn_mask = attn_mask.unsqueeze(0).unsqueeze(0) # shape: (1, 1, seqlen, seqlen)
|
549 |
+
# attn_mask = attn_mask.expand(batch_size, self.n_head, seqlen, kv_seqlen) # shape: (batch_size, n_head, seqlen, seqlen)
|
550 |
+
# if self.alibi_emb is not None:
|
551 |
+
# self.alibi_emb = self.alibi_emb.to(x.device)
|
552 |
+
# attn_mask = attn_mask + self.alibi_emb[:,:,:,:kv_seqlen]
|
553 |
+
|
554 |
+
#attn_mask = self.window_size_mask(batch_size, self.n_head, seqlen, kv_seqlen, start_idx, x.device, x.dtype) # -inf or 0
|
555 |
+
|
556 |
+
attn_weights = torch.matmul(xq, xk.transpose(2, 3)) * (1 / math.sqrt(self.dim_qk_head)) # shape: (batch_size, n_head, seqlen, seqlen)
|
557 |
+
attn_weights = attn_weights + attn_mask.expand(batch_size, self.n_head, seqlen, kv_seqlen) # shape: (batch_size, n_head, seqlen, seqlen
|
558 |
+
attn_weights = F.softmax(attn_weights.float(), dim=-1).to(xq.dtype) # shape: (batch_size, n_head, seqlen, seqlen)
|
559 |
+
# use log_softmax to avoid overflow
|
560 |
+
#attn_weights = F.log_softmax(attn_weights, dim=-1).exp() # shape: (batch_size, n_head, seqlen, seqlen)
|
561 |
+
self.saved_attn_map = attn_weights
|
562 |
+
|
563 |
+
attn_weights = F.dropout(attn_weights, p=self.dropout_rate, training=self.training)
|
564 |
+
|
565 |
+
y = torch.matmul(attn_weights, xv) # shape: (batch_size, n_head, seqlen, head_dim)
|
566 |
+
|
567 |
+
y = y.transpose(1, 2).contiguous().view(batch_size, seqlen, emb_dim) # merge heads
|
568 |
+
|
569 |
+
# output projection
|
570 |
+
return self.wo(y)
|
571 |
+
|
572 |
+
def get_intermediate_attn_v(self):
|
573 |
+
return self.saved_attn_map, self.saved_v
|
574 |
+
|
575 |
+
|
576 |
+
class TransformerBlock(nn.Module):
|
577 |
+
def __init__(self, config):
|
578 |
+
super().__init__()
|
579 |
+
self.ln_1 = RMSNorm(config.dim)
|
580 |
+
self.attn = Attention(config)
|
581 |
+
self.ln_2 = RMSNorm(config.dim)
|
582 |
+
self.mlp = MLP(config)
|
583 |
+
|
584 |
+
self.residual_factor = config.residual_factor
|
585 |
+
|
586 |
+
def forward(self, x: Tensor, attn_mask: Tensor, start_idx: int):
|
587 |
+
# post-LN
|
588 |
+
residual = x
|
589 |
+
x = self.attn(x, attn_mask, start_idx=start_idx)
|
590 |
+
x = self.ln_1(self.residual_connection(x, residual))
|
591 |
+
|
592 |
+
residual = x
|
593 |
+
x = self.mlp(x)
|
594 |
+
x = self.ln_2(self.residual_connection(x, residual))
|
595 |
+
|
596 |
+
return x
|
597 |
+
|
598 |
+
def residual_connection(self, x, residual):
|
599 |
+
# residual factor should > 1.0
|
600 |
+
return residual * self.residual_factor + x
|
601 |
+
|
602 |
+
|
603 |
+
|
604 |
+
class DearthModel(nn.Module):
|
605 |
+
def __init__(self, config: DearthConfig):
|
606 |
+
super().__init__()
|
607 |
+
assert config.vocab_size is not None
|
608 |
+
assert config.max_token_len is not None
|
609 |
+
|
610 |
+
self.layer_init_factor = config.layer_init_factor if config.layer_init_factor is not None else float(config.n_layer * 8) ** (-1/2)
|
611 |
+
self.residual_factor = config.residual_factor if config.residual_factor is not None else float(config.n_layer * 2) ** (1/4)
|
612 |
+
if config.residual_factor is None:
|
613 |
+
config.residual_factor = self.residual_factor
|
614 |
+
logging.warning(f"residual_factor is not set, using default value {self.residual_factor} = (2 * n_layer) ** 1/4")
|
615 |
+
if config.layer_init_factor is None:
|
616 |
+
config.layer_init_factor = self.layer_init_factor
|
617 |
+
logging.warning(f"layer_init_factor is not set, using default value {self.layer_init_factor} = (n_layer * 8) ** -1/2")
|
618 |
+
|
619 |
+
self.config = config
|
620 |
+
|
621 |
+
layers = []
|
622 |
+
for i in range(config.n_layer):
|
623 |
+
if config.mimic_attn_layer is not None and i+1 == config.mimic_attn_layer:
|
624 |
+
new_layer = TransformerBlock(config)
|
625 |
+
new_layer.attn = Mimic_Attn(config)
|
626 |
+
layers.append(new_layer)
|
627 |
+
else:
|
628 |
+
layers.append(TransformerBlock(config))
|
629 |
+
|
630 |
+
self.layers = nn.ModuleList(layers)
|
631 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id)
|
632 |
+
self.ln_before = RMSNorm(config.dim)
|
633 |
+
self.shared_attn_mask = SharedAttentionMask(config)
|
634 |
+
|
635 |
+
if config.mimic_attn_layer is not None and config.mimic_attn_layer > 0 and config.mimic_attn_layer <= config.n_layer:
|
636 |
+
self.mimic_attn = self.layers[config.mimic_attn_layer-1].attn
|
637 |
+
else:
|
638 |
+
self.mimic_attn = None
|
639 |
+
|
640 |
+
# initialize weights
|
641 |
+
_init_weight(self, self.layer_init_factor)
|
642 |
+
|
643 |
+
def get_input_device(self):
|
644 |
+
return self.embed_tokens.weight.device
|
645 |
+
|
646 |
+
# def _init_weights(self, module):
|
647 |
+
# if isinstance(module, nn.Linear):
|
648 |
+
# torch.nn.init.xavier_normal_(module.weight, gain=self.layer_init_factor)
|
649 |
+
# if module.bias is not None:
|
650 |
+
# torch.nn.init.zeros_(module.bias)
|
651 |
+
# elif isinstance(module, nn.Embedding):
|
652 |
+
# torch.nn.init.xavier_normal_(module.weight, gain=1)
|
653 |
+
# elif isinstance(module, RMSNorm):
|
654 |
+
# module.weight.data.fill_(1.0)
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
def forward(self, tokens, start_idx=0): # return all logits
|
659 |
+
batch_size, seqlen = tokens.size()
|
660 |
+
if seqlen > self.config.max_token_len:
|
661 |
+
raise ValueError(f"input sequence length {seqlen} exceeds maximum sequence length {self.config.max_token_len}")
|
662 |
+
|
663 |
+
# create token embeddings from token table; x.shape = (batch_size, seqlen, dim)
|
664 |
+
h = self.embed_tokens(tokens)
|
665 |
+
assert h.size() == (batch_size, seqlen, self.config.dim)
|
666 |
+
|
667 |
+
h = self.ln_before(h)
|
668 |
+
|
669 |
+
# transformer layers
|
670 |
+
attn_mask = self.shared_attn_mask(seqlen, seqlen, q_start_idx=start_idx) # TODO: it will not work if q_seq_len != kv_seq_len
|
671 |
+
for layer in self.layers:
|
672 |
+
h = layer(h, attn_mask, start_idx=start_idx) # h.shape = (batch_size, seqlen, dim)
|
673 |
+
|
674 |
+
return h, None
|
675 |
+
|
676 |
+
|
677 |
+
def get_num_params(self):
|
678 |
+
"""
|
679 |
+
Return the number of parameters in the model.
|
680 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
681 |
+
The token embeddings would too, except due to the parameter sharing these
|
682 |
+
params are actually used as weights in the final layer, so we include them.
|
683 |
+
"""
|
684 |
+
#n_params = sum(p.numel() for p in self.parameters())
|
685 |
+
n_params = sum(p.numel() for p in self.transformer.layers[0].parameters() if p.requires_grad)
|
686 |
+
return int(n_params)
|
687 |
+
|
688 |
+
|
689 |
+
def get_intermediate_attn_v(self):
|
690 |
+
if self.mimic_attn is None:
|
691 |
+
return torch.zeros(1, 1, 1, 1), torch.zeros(1, 1, 1, 1)
|
692 |
+
return self.mimic_attn.get_intermediate_attn_v()
|
693 |
+
|
694 |
+
|
695 |
+
class DearthForCausalLM(nn.Module):
|
696 |
+
_tied_weights_keys = ["lm_head.weight"]
|
697 |
+
|
698 |
+
def __init__(self, config: DearthConfig):
|
699 |
+
super().__init__()
|
700 |
+
self.model = DearthModel(config)
|
701 |
+
self.dearth_config = config
|
702 |
+
self.vocab_size = config.vocab_size
|
703 |
+
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False)
|
704 |
+
torch.nn.init.xavier_normal_(self.lm_head.weight, gain=1)
|
705 |
+
|
706 |
+
self.front_window_size = config.front_window_size
|
707 |
+
self.sliding_window_size = config.sliding_window_size
|
708 |
+
|
709 |
+
def get_input_device(self):
|
710 |
+
return self.model.get_input_device()
|
711 |
+
|
712 |
+
def get_intermediate_attn_v(self):
|
713 |
+
return self.model.get_intermediate_attn_v()
|
714 |
+
|
715 |
+
def print_all_params(self):
|
716 |
+
for name, param in self.named_parameters():
|
717 |
+
print(f"name: {name}, param.shape: {param.shape}")
|
718 |
+
|
719 |
+
def forward(
|
720 |
+
self,
|
721 |
+
input_ids: torch.LongTensor = None,
|
722 |
+
use_cache: Optional[bool] = False,
|
723 |
+
) ->Tuple: #-> Union[Tuple, CausalLMOutputWithPast]:
|
724 |
+
r"""
|
725 |
+
Args:
|
726 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
727 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
728 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
729 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
730 |
+
|
731 |
+
Returns:
|
732 |
+
|
733 |
+
Example:
|
734 |
+
|
735 |
+
```python
|
736 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
737 |
+
|
738 |
+
>>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
739 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
740 |
+
|
741 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
742 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
743 |
+
|
744 |
+
>>> # Generate
|
745 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
746 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
747 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
748 |
+
```"""
|
749 |
+
outputs = self.model(
|
750 |
+
tokens=input_ids
|
751 |
+
)
|
752 |
+
|
753 |
+
hidden_states = outputs[0]
|
754 |
+
logits = self.lm_head(hidden_states)
|
755 |
+
|
756 |
+
output = (logits,) + outputs[1:]
|
757 |
+
return output
|
758 |
+
|
759 |
+
|
760 |
+
def _init_weight(model, weight_init_factor): # TODO: fix this part if change any model structure
|
761 |
+
small_list = {'wv', 'wo', 'w1', 'w2', 'w3'}
|
762 |
+
norm_list = {'ln_before', 'ln_2', 'ln_1'}
|
763 |
+
for name, p in model.named_parameters():
|
764 |
+
percise_name = name.split(".")[-2]
|
765 |
+
if "bias" in name:
|
766 |
+
logging.debug(f"the parameter {name} is initialized with 0.0")
|
767 |
+
p.data.fill_(0.0)
|
768 |
+
elif percise_name in small_list:
|
769 |
+
logging.debug(f"the parameter {name} is initialized with gain={weight_init_factor}")
|
770 |
+
torch.nn.init.xavier_normal_(p, gain=weight_init_factor)
|
771 |
+
elif percise_name in norm_list:
|
772 |
+
logging.debug(f"the parameter {name} is initialized with 1.0")
|
773 |
+
p.data.fill_(1.0)
|
774 |
+
else:
|
775 |
+
logging.debug(f"the parameter {name} is initialized with gain=1.0")
|
776 |
+
torch.nn.init.xavier_normal_(p, gain=1)
|
777 |
+
|
extract_model.ipynb
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"model_path = \"./ts100-re2-h1-4000.pt\"\n",
|
11 |
+
"model = torch.load(model_path, map_location=torch.device('cpu'))"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 6,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"pure_model = model['model']"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 7,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"new_model_name = \"ts100-re2-h1-4000-model.pt\"\n",
|
30 |
+
"torch.save(pure_model, new_model_name)"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"metadata": {
|
35 |
+
"kernelspec": {
|
36 |
+
"display_name": "pytorch",
|
37 |
+
"language": "python",
|
38 |
+
"name": "python3"
|
39 |
+
},
|
40 |
+
"language_info": {
|
41 |
+
"codemirror_mode": {
|
42 |
+
"name": "ipython",
|
43 |
+
"version": 3
|
44 |
+
},
|
45 |
+
"file_extension": ".py",
|
46 |
+
"mimetype": "text/x-python",
|
47 |
+
"name": "python",
|
48 |
+
"nbconvert_exporter": "python",
|
49 |
+
"pygments_lexer": "ipython3",
|
50 |
+
"version": "3.10.11"
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"nbformat": 4,
|
54 |
+
"nbformat_minor": 2
|
55 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|
tk/config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/gpt-neo-125M",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"local",
|
11 |
+
"global",
|
12 |
+
"local"
|
13 |
+
],
|
14 |
+
"attention_types": [
|
15 |
+
[
|
16 |
+
[
|
17 |
+
"global",
|
18 |
+
"local"
|
19 |
+
],
|
20 |
+
2
|
21 |
+
]
|
22 |
+
],
|
23 |
+
"bos_token_id": 50256,
|
24 |
+
"embed_dropout": 0,
|
25 |
+
"eos_token_id": 50256,
|
26 |
+
"gradient_checkpointing": false,
|
27 |
+
"hidden_size": 768,
|
28 |
+
"initializer_range": 0.02,
|
29 |
+
"intermediate_size": null,
|
30 |
+
"layer_norm_epsilon": 1e-05,
|
31 |
+
"max_position_embeddings": 2048,
|
32 |
+
"model_type": "gpt_neo",
|
33 |
+
"num_heads": 16,
|
34 |
+
"num_layers": 4,
|
35 |
+
"resid_dropout": 0,
|
36 |
+
"summary_activation": null,
|
37 |
+
"summary_first_dropout": 0.1,
|
38 |
+
"summary_proj_to_labels": true,
|
39 |
+
"summary_type": "cls_index",
|
40 |
+
"summary_use_proj": true,
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.28.0",
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 50257,
|
45 |
+
"window_size": 256
|
46 |
+
}
|
tk/special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tk/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tk/tokenizer_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"special_tokens_map_file": null,
|
24 |
+
"tokenizer_class": "GPT2Tokenizer",
|
25 |
+
"unk_token": {
|
26 |
+
"__type": "AddedToken",
|
27 |
+
"content": "<|endoftext|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": true,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tk/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ts100-re2-h1-4000-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d4f2675a1c7d191bb30f8cf02c1049e6cbd22ebafb360e3c7541f027751278b
|
3 |
+
size 35395438
|
ts100-re2-h1.yml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
max_token_len: 1024 # should be larger than the seqlen
|
3 |
+
#vocab_size: 32000
|
4 |
+
n_layer: 24
|
5 |
+
n_head: 4
|
6 |
+
n_kv_head: 2 # multi-query attention
|
7 |
+
dim: 128
|
8 |
+
#dim_qk_head: 32 # usually set to dim // n_head, but can be different
|
9 |
+
#hidden_dim: # 768*4, the MLP after the attention layer
|
10 |
+
#multiple_of: 64 # make sure the hidden_dim is a multiple of this number, beause silu (swish) is used, so hidden layer will be changed
|
11 |
+
dropout_rate: 0.05 # for the attention map
|
12 |
+
#layer_init_factor: 0.1 # by default = (n_layer * 8) ** -1/2; should use default value, based on the microsoft DeepNet paper
|
13 |
+
#residual_factor: 2 # by default = (2 * n_layer) ** 1/2; should use default value
|
14 |
+
attn_window_size: 512
|
15 |
+
front_window_size: 0
|
16 |
+
use_rotary: True
|
17 |
+
use_alibi: False
|
18 |
+
|
19 |
+
mimic_attn_layer: 21 # replace this layer to be a training target, to mimic the attention of the teacher; this special layer should use the similar setting as the teacher
|
20 |
+
mimic_n_head: 16
|
21 |
+
mimic_n_kv_head: 16
|
22 |
+
#mimic_sliding_window_size: 1024
|
23 |
+
mimic_attn_dropout: 0.0
|
24 |
+
mimic_dim_qk_head: 16
|
25 |
+
mimic_use_rotary: True
|
26 |
+
mimic_use_alibi: False
|
27 |
+
|
28 |
+
opt:
|
29 |
+
gradient_clip: 1.0
|
30 |
+
lr: 1
|
31 |
+
beta1: 0.9
|
32 |
+
beta2: 0.99
|
33 |
+
weight_decay: 0.2
|
34 |
+
opt_name: sophia
|
35 |
+
|
36 |
+
loss:
|
37 |
+
soft_loss_weight: 0.0
|
38 |
+
hard_loss_weight: 1.0
|
39 |
+
mimic_loss_weight: 0.0
|
40 |
+
virtual_v_head_num: 16 # based on MiniLM v2, it is similar to attention but only use v to do self-attn. It make the student's x_v similar to teacher's x_v
|
41 |
+
loss_soft_temperature: 1 # temperature for the soft loss, to make the softmax more smooth, sensitive to the small logits
|
42 |
+
|
43 |
+
scheduler:
|
44 |
+
slr_seg:
|
45 |
+
# - [0.0000001, 0.0005, 300]
|
46 |
+
# - [0.0005, 0.0005, 2000]
|
47 |
+
- [0.0005, 0.00025, 1000]
|
48 |
+
|
49 |
+
|