File size: 6,814 Bytes
4822df2
23a1215
4822df2
 
 
 
 
 
 
 
 
 
 
00f77c2
4822df2
 
 
 
 
 
f9281a4
4822df2
 
e68b946
 
4822df2
 
 
 
 
 
 
 
e68b946
 
 
 
 
14ea568
 
 
f9281a4
14ea568
 
 
f9281a4
004109e
14ea568
e68b946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4822df2
004109e
 
 
 
 
4822df2
00f77c2
4822df2
9ce97dc
f9281a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23a1215
 
 
 
 
 
 
 
 
 
f9281a4
14ea568
f11d2c2
4822df2
 
f11d2c2
4822df2
 
 
 
 
 
 
 
f9281a4
00f77c2
23a1215
4822df2
 
 
 
 
 
 
 
e68b946
 
 
14ea568
e68b946
9ce97dc
4822df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9281a4
 
4822df2
23a1215
4822df2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
)
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
from huggingface_hub import hf_hub_download

# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src'))  # noqa

from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time  # noqa
from evaluate import EvaluationArguments
from shared import device, CATGEGORY_OPTIONS

st.set_page_config(
    page_title='SponsorBlock ML',
    page_icon='🤖',
    #  layout='wide',
    #  initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://github.com/xenova/sponsorblock-ml',
        'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
        #  'About': "# This is a header. This is an *extremely* cool app!"
    }
)
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints

# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1


# Faster caching system for predictions (No need to hash)
@st.cache(persist=True, allow_output_mutation=True)
def persistdata():
    return {}


prediction_cache = persistdata()

MODELS = {
    'Small (77M)': {
        'pretrained': 'google/t5-v1_1-small',
        'repo_id': 'Xenova/sponsorblock-small',
    },
    'Base v1 (220M)': {
        'pretrained': 't5-base',
        'repo_id': 'EColi/sponsorblock-base-v1',
    },

    'Base v1.1 (250M)': {
        'pretrained': 'google/t5-v1_1-base',
        'repo_id': 'Xenova/sponsorblock-base',
    }
}

# Create per-model cache
for m in MODELS:
    if m not in prediction_cache:
        prediction_cache[m] = {}


CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'


@st.cache(persist=True, allow_output_mutation=True)
def download_classifier(classifier_args):
    # Save classifier and vectorizer
    hf_hub_download(repo_id=CLASSIFIER_PATH,
                    filename=classifier_args.classifier_file,
                    cache_dir=classifier_args.classifier_dir,
                    force_filename=classifier_args.classifier_file,
                    )
    hf_hub_download(repo_id=CLASSIFIER_PATH,
                    filename=classifier_args.vectorizer_file,
                    cache_dir=classifier_args.classifier_dir,
                    force_filename=classifier_args.vectorizer_file,
                    )
    return True


def predict_function(model_id, model, tokenizer, segmentation_args, classifier_args, video_id):
    if video_id not in prediction_cache[model_id]:
        prediction_cache[model_id][video_id] = pred(
            video_id, model, tokenizer,
            segmentation_args=segmentation_args,
            classifier_args=classifier_args
        )
    return prediction_cache[model_id][video_id]


@st.cache(persist=True, allow_output_mutation=True)
def load_predict(model_id):
    model_info = MODELS[model_id]

    # Use default segmentation and classification arguments
    evaluation_args = EvaluationArguments(model_path=model_info['repo_id'])
    segmentation_args = SegmentationArguments()
    classifier_args = ClassifierArguments()

    model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
    model.to(device())

    tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)

    download_classifier(classifier_args)

    return partial(predict_function, model_id, model, tokenizer, segmentation_args, classifier_args)


def main():

    # Display heading and subheading
    st.write('# SponsorBlock ML')
    st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')

    model_id = st.selectbox('Select model', MODELS.keys(), index=0)

    # Load prediction function
    predict = load_predict(model_id)

    video_id = st.text_input('Video ID:')  # , placeholder='e.g., axtQvkSpoto'

    categories = st.multiselect('Categories:',
                                CATGEGORY_OPTIONS.keys(),
                                CATGEGORY_OPTIONS.keys(),
                                format_func=CATGEGORY_OPTIONS.get
                                )

    # Hide segments with a confidence lower than
    confidence_threshold = st.slider(
        'Confidence Threshold (%):', min_value=0, max_value=100)

    video_id_length = len(video_id)
    if video_id_length == 0:
        return

    elif video_id_length != 11:
        st.exception(ValueError('Invalid YouTube ID'))
        return

    with st.spinner('Running model...'):
        predictions = predict(video_id)

    if len(predictions) == 0:
        st.success('No segments found!')
        return

    submit_segments = []
    for index, prediction in enumerate(predictions, start=1):
        if prediction['category'] not in categories:
            continue  # Skip

        confidence = prediction['probability'] * 100

        if confidence < confidence_threshold:
            continue

        submit_segments.append({
            'segment': [prediction['start'], prediction['end']],
            'category': prediction['category'].lower(),
            'actionType': 'skip'
        })
        start_time = seconds_to_time(prediction['start'])
        end_time = seconds_to_time(prediction['end'])
        with st.expander(
            f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
        ):

            url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
            # autoplay=1controls=0&&modestbranding=1&fs=0

            # , width=None, height=None, scrolling=False
            components.iframe(url, width=670, height=376)

            text = ' '.join(w['text'] for w in prediction['words'])
            st.write(f"**Times:** {start_time} \u2192 {end_time}")
            st.write(
                f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
            st.write(f"**Confidence:** {confidence:.2f}%")
            st.write(f'**Text:** "{text}"')

    json_data = quote(json.dumps(submit_segments))
    link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
    st.markdown(link, unsafe_allow_html=True)
    wiki_link = '[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)'
    st.markdown(wiki_link, unsafe_allow_html=True)


if __name__ == '__main__':
    main()