Spaces:
Running
Running
File size: 6,814 Bytes
4822df2 23a1215 4822df2 00f77c2 4822df2 f9281a4 4822df2 e68b946 4822df2 e68b946 14ea568 f9281a4 14ea568 f9281a4 004109e 14ea568 e68b946 4822df2 004109e 4822df2 00f77c2 4822df2 9ce97dc f9281a4 23a1215 f9281a4 14ea568 f11d2c2 4822df2 f11d2c2 4822df2 f9281a4 00f77c2 23a1215 4822df2 e68b946 14ea568 e68b946 9ce97dc 4822df2 f9281a4 4822df2 23a1215 4822df2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from functools import partial
from math import ceil, floor
import streamlit.components.v1 as components
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
from huggingface_hub import hf_hub_download
# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src')) # noqa
from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time # noqa
from evaluate import EvaluationArguments
from shared import device, CATGEGORY_OPTIONS
st.set_page_config(
page_title='SponsorBlock ML',
page_icon='🤖',
# layout='wide',
# initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/xenova/sponsorblock-ml',
'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
# 'About': "# This is a header. This is an *extremely* cool app!"
}
)
# https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
# https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#experimental-t5-pre-trained-model-checkpoints
# https://huggingface.co/docs/transformers/model_doc/t5
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# Faster caching system for predictions (No need to hash)
@st.cache(persist=True, allow_output_mutation=True)
def persistdata():
return {}
prediction_cache = persistdata()
MODELS = {
'Small (77M)': {
'pretrained': 'google/t5-v1_1-small',
'repo_id': 'Xenova/sponsorblock-small',
},
'Base v1 (220M)': {
'pretrained': 't5-base',
'repo_id': 'EColi/sponsorblock-base-v1',
},
'Base v1.1 (250M)': {
'pretrained': 'google/t5-v1_1-base',
'repo_id': 'Xenova/sponsorblock-base',
}
}
# Create per-model cache
for m in MODELS:
if m not in prediction_cache:
prediction_cache[m] = {}
CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'
@st.cache(persist=True, allow_output_mutation=True)
def download_classifier(classifier_args):
# Save classifier and vectorizer
hf_hub_download(repo_id=CLASSIFIER_PATH,
filename=classifier_args.classifier_file,
cache_dir=classifier_args.classifier_dir,
force_filename=classifier_args.classifier_file,
)
hf_hub_download(repo_id=CLASSIFIER_PATH,
filename=classifier_args.vectorizer_file,
cache_dir=classifier_args.classifier_dir,
force_filename=classifier_args.vectorizer_file,
)
return True
def predict_function(model_id, model, tokenizer, segmentation_args, classifier_args, video_id):
if video_id not in prediction_cache[model_id]:
prediction_cache[model_id][video_id] = pred(
video_id, model, tokenizer,
segmentation_args=segmentation_args,
classifier_args=classifier_args
)
return prediction_cache[model_id][video_id]
@st.cache(persist=True, allow_output_mutation=True)
def load_predict(model_id):
model_info = MODELS[model_id]
# Use default segmentation and classification arguments
evaluation_args = EvaluationArguments(model_path=model_info['repo_id'])
segmentation_args = SegmentationArguments()
classifier_args = ClassifierArguments()
model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)
download_classifier(classifier_args)
return partial(predict_function, model_id, model, tokenizer, segmentation_args, classifier_args)
def main():
# Display heading and subheading
st.write('# SponsorBlock ML')
st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')
model_id = st.selectbox('Select model', MODELS.keys(), index=0)
# Load prediction function
predict = load_predict(model_id)
video_id = st.text_input('Video ID:') # , placeholder='e.g., axtQvkSpoto'
categories = st.multiselect('Categories:',
CATGEGORY_OPTIONS.keys(),
CATGEGORY_OPTIONS.keys(),
format_func=CATGEGORY_OPTIONS.get
)
# Hide segments with a confidence lower than
confidence_threshold = st.slider(
'Confidence Threshold (%):', min_value=0, max_value=100)
video_id_length = len(video_id)
if video_id_length == 0:
return
elif video_id_length != 11:
st.exception(ValueError('Invalid YouTube ID'))
return
with st.spinner('Running model...'):
predictions = predict(video_id)
if len(predictions) == 0:
st.success('No segments found!')
return
submit_segments = []
for index, prediction in enumerate(predictions, start=1):
if prediction['category'] not in categories:
continue # Skip
confidence = prediction['probability'] * 100
if confidence < confidence_threshold:
continue
submit_segments.append({
'segment': [prediction['start'], prediction['end']],
'category': prediction['category'].lower(),
'actionType': 'skip'
})
start_time = seconds_to_time(prediction['start'])
end_time = seconds_to_time(prediction['end'])
with st.expander(
f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
):
url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
# autoplay=1controls=0&&modestbranding=1&fs=0
# , width=None, height=None, scrolling=False
components.iframe(url, width=670, height=376)
text = ' '.join(w['text'] for w in prediction['words'])
st.write(f"**Times:** {start_time} \u2192 {end_time}")
st.write(
f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
st.write(f"**Confidence:** {confidence:.2f}%")
st.write(f'**Text:** "{text}"')
json_data = quote(json.dumps(submit_segments))
link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
st.markdown(link, unsafe_allow_html=True)
wiki_link = '[Review generated segments before submitting!](https://wiki.sponsor.ajay.app/w/Automating_Submissions)'
st.markdown(wiki_link, unsafe_allow_html=True)
if __name__ == '__main__':
main()
|