Spaces:
Running
Running
File size: 15,851 Bytes
5fbdd3c 320a2ba 90d1f68 320a2ba 5fbdd3c 320a2ba 5fbdd3c 320a2ba 5fbdd3c 90d1f68 5fbdd3c 31d605f 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 320a2ba 5fbdd3c 320a2ba 90d1f68 320a2ba 5fbdd3c 320a2ba 5fbdd3c 320a2ba 5fbdd3c 320a2ba 5fbdd3c 31d605f 5fbdd3c 31d605f 5fbdd3c 31d605f 5fbdd3c 31d605f 5fbdd3c 31d605f 5fbdd3c 31d605f 5fbdd3c 31d605f 5fbdd3c 320a2ba 5fbdd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
from preprocess import load_datasets, DatasetArguments
from predict import ClassifierArguments, SEGMENT_MATCH_RE, CATEGORIES
from shared import CustomTokens, device, GeneralArguments, OutputArguments
from model import ModelArguments
import transformers
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import pickle
from transformers import (
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
AutoTokenizer,
AutoModelForSeq2SeqLM
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from utils import re_findall
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.13.0.dev0')
require_version('datasets>=1.8.0',
'To fix: pip install -r requirements.txt')
os.environ['WANDB_DISABLED'] = 'true'
logger = logging.getLogger(__name__)
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
handlers=[logging.StreamHandler(sys.stdout)],
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={'help': 'The number of processes to use for the preprocessing.'},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
'help': 'For debugging purposes or quicker training, truncate the number of training examples to this value if set.'
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
'help': 'For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set.'
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
'help': 'For debugging purposes or quicker training, truncate the number of prediction examples to this value if set.'
},
)
@dataclass
class SequenceTrainingArguments(OutputArguments, Seq2SeqTrainingArguments):
seed: Optional[int] = GeneralArguments.__dataclass_fields__['seed']
num_train_epochs: float = field(
default=1, metadata={'help': 'Total number of training epochs to perform.'})
save_steps: int = field(default=5000, metadata={
'help': 'Save checkpoint every X updates steps.'})
eval_steps: int = field(default=5000, metadata={
'help': 'Run an evaluation every X steps.'})
logging_steps: int = field(default=5000, metadata={
'help': 'Log every X updates steps.'})
skip_train_transformer: bool = field(default=False, metadata={
'help': 'Whether to skip training the transformer.'})
train_classifier: bool = field(default=False, metadata={
'help': 'Whether to run training on the 2nd phase (classifier).'})
# do_eval: bool = field(default=False, metadata={
# 'help': 'Whether to run eval on the dev set.'})
do_predict: bool = field(default=False, metadata={
'help': 'Whether to run predictions on the test set.'})
per_device_train_batch_size: int = field(
default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'}
)
per_device_eval_batch_size: int = field(
default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for evaluation.'}
)
# report_to: Optional[List[str]] = field(
# default=None, metadata={"help": "The list of integrations to report the results and logs to."}
# )
evaluation_strategy: str = field(
default='steps',
metadata={
'help': 'The evaluation strategy to use.',
'choices': ['no', 'steps', 'epoch']
},
)
# evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`):
# The evaluation strategy to adopt during training. Possible values are:
# * :obj:`"no"`: No evaluation is done during training.
# * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
# * :obj:`"epoch"`: Evaluation is done at the end of each epoch.
def main():
# reset()
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
hf_parser = HfArgumentParser((
ModelArguments,
DatasetArguments,
DataTrainingArguments,
SequenceTrainingArguments,
ClassifierArguments
))
model_args, dataset_args, data_training_args, training_args, classifier_args = hf_parser.parse_args_into_dataclasses()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed before initializing model.
# set_seed(training_args.seed)
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
)
logger.info(f'Training/evaluation parameters {training_args}')
# FP16 https://github.com/huggingface/transformers/issues/9295
# Works:
# https://huggingface.co/docs/transformers/model_doc/t5v1.1
# google/t5-v1_1-small
# google/t5-v1_1-base
# google/t5-v1_1-large
# google/t5-v1_1-xl
# google/t5-v1_1-xxl
# https://huggingface.co/docs/transformers/model_doc/t5
# t5-small
# t5-base
# t5-large
# t5-3b
# t5-11b
# allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810
# Further work:
# Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if training_args.skip_train_transformer and not training_args.train_classifier:
print('Nothing to do. Exiting')
return
raw_datasets = load_datasets(dataset_args)
# , cache_dir=model_args.cache_dir
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if training_args.train_classifier:
print('Train classifier')
# 1. Vectorize raw data to pass into classifier
# CountVectorizer TfidfVectorizer
# TfidfVectorizer - better (comb of CountVectorizer)
vectorizer = TfidfVectorizer( # CountVectorizer
# lowercase=False,
# stop_words='english', # TODO optimise stop words?
# stop_words=stop_words,
ngram_range=(1, 2), # best so far
# max_features=8000 # remove for higher accuracy?
max_features=20000
# max_features=10000
# max_features=1000
)
train_test_data = {
'train': {
'X': [],
'y': []
},
'test': {
'X': [],
'y': []
}
}
print('Splitting')
for ds_type in train_test_data:
dataset = raw_datasets[ds_type]
for row in dataset:
matches = re_findall(SEGMENT_MATCH_RE, row['extracted'])
if matches:
for match in matches:
train_test_data[ds_type]['X'].append(match['text'])
class_index = CATEGORIES.index(match['category'])
train_test_data[ds_type]['y'].append(class_index)
else:
train_test_data[ds_type]['X'].append(row['text'])
train_test_data[ds_type]['y'].append(0)
print('Fitting')
_X_train = vectorizer.fit_transform(train_test_data['train']['X'])
_X_test = vectorizer.transform(train_test_data['test']['X'])
y_train = train_test_data['train']['y']
y_test = train_test_data['test']['y']
# 2. Create classifier
classifier = LogisticRegression(max_iter=2000, class_weight='balanced')
# 3. Fit data
print('Fit classifier')
classifier.fit(_X_train, y_train)
# 4. Measure accuracy
accuracy = classifier.score(_X_test, y_test)
print(f'[LogisticRegression] Accuracy percent:',
round(accuracy*100, 3))
# 5. Save classifier and vectorizer
with open(os.path.join(classifier_args.classifier_dir, classifier_args.classifier_file), 'wb') as fp:
pickle.dump(classifier, fp)
with open(os.path.join(classifier_args.classifier_dir, classifier_args.vectorizer_file), 'wb') as fp:
pickle.dump(vectorizer, fp)
if not training_args.skip_train_transformer:
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.'
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
)
from model import get_model_tokenizer
model, tokenizer = get_model_tokenizer(
model_args.model_name_or_path, model_args.cache_dir)
# max_tokenizer_length = model.config.d_model
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = raw_datasets['train'].column_names
prefix = CustomTokens.EXTRACT_SEGMENTS_PREFIX.value
PAD_TOKEN_REPLACE_ID = -100
# https://github.com/huggingface/transformers/issues/5204
def preprocess_function(examples):
inputs = examples['text']
targets = examples['extracted']
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100
# when we want to ignore padding in the loss.
model_inputs['labels'] = [
[(l if l != tokenizer.pad_token_id else PAD_TOKEN_REPLACE_ID)
for l in label]
for label in labels['input_ids']
]
return model_inputs
def prepare_dataset(dataset, desc):
return dataset.map(
preprocess_function,
batched=True,
num_proc=data_training_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not dataset_args.overwrite_cache,
desc=desc, # tokenizing train dataset
)
# train_dataset # TODO shuffle?
# if training_args.do_train:
if 'train' not in raw_datasets: # TODO do checks above?
raise ValueError('Train dataset missing')
train_dataset = raw_datasets['train']
if data_training_args.max_train_samples is not None:
train_dataset = train_dataset.select(
range(data_training_args.max_train_samples))
with training_args.main_process_first(desc='train dataset map pre-processing'):
train_dataset = prepare_dataset(
train_dataset, desc='Running tokenizer on train dataset')
if 'validation' not in raw_datasets:
raise ValueError('Validation dataset missing')
eval_dataset = raw_datasets['validation']
if data_training_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(
range(data_training_args.max_eval_samples))
with training_args.main_process_first(desc='validation dataset map pre-processing'):
eval_dataset = prepare_dataset(
eval_dataset, desc='Running tokenizer on validation dataset')
if 'test' not in raw_datasets:
raise ValueError('Test dataset missing')
predict_dataset = raw_datasets['test']
if data_training_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(
range(data_training_args.max_predict_samples))
with training_args.main_process_first(desc='prediction dataset map pre-processing'):
predict_dataset = prepare_dataset(
predict_dataset, desc='Running tokenizer on prediction dataset')
# Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=PAD_TOKEN_REPLACE_ID,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Done processing datasets
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
try:
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
except KeyboardInterrupt:
# TODO add option to save model on interrupt?
# print('Saving model')
# trainer.save_model(os.path.join(
# training_args.output_dir, 'checkpoint-latest')) # TODO use dir
raise
metrics = train_result.metrics
max_train_samples = data_training_args.max_train_samples or len(
train_dataset)
metrics['train_samples'] = min(max_train_samples, len(train_dataset))
trainer.log_metrics('train', metrics)
trainer.save_metrics('train', metrics)
trainer.save_state()
kwargs = {'finetuned_from': model_args.model_name_or_path,
'tasks': 'summarization'}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == '__main__':
main()
|